Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FUT6 inhibits the proliferation, migration, invasion, and EGF-induced EMT of head and neck squamous cell carcinoma (HNSCC) by regulating EGFR/ERK/STAT signaling pathway

Abstract

Glycosylation change is one of the landmark events of tumor occurrence and development, and tumor cells may be inhibited by regulating the aberrant expression of glycosyltransferases. Currently, fucosyltransferase VI (FUT6), which is involved in the synthesis of α-1, 3 fucosyl bond, has been detected to be closely associated with multiple tumors, but its function and mechanism in head and neck squamous cell carcinoma (HNSCC) still need further research. In this study, FUT6 knockdown and overexpression strategies were used to investigate the effects of FUT6 on cell proliferation, migration, and invasion, as well as the growth and metastasis of HNSCC in a xenografts mouse model. The protein expression levels of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Signal Transducer and Activator of Transcription (STAT), protein kinase B (AKT), c-Myc, and epithelial–mesenchymal transition (EMT) markers were determined by western blot analysis. Our research found that the mRNA expression of FUT6 was lower in HNSCC tissues than in normal mucosal epithelial tissues. In Cal-27 and FaDu cells, FUT6 overexpression inhibited cell proliferation, migration and invasion, causing upregulation of ZO-1 and E-cadherin, downregulation of N-cadherin and Vimentin, and finally decreased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In HSC-3 cells, knockdown of FUT6 promoted cell proliferation, migration and invasion, downregulating ZO-1 and E-cadherin, upregulating N-cadherin and Vimentin, and increased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In the HNSCC xenografts mouse, FUT6 overexpression inhibited tumor growth and metastasis. In summary, FUT6 controls the proliferation, migration, invasion, and EGF-induced EMT of HNSCC by regulating EGFR/ERK/STAT signaling pathway, indicating its potential future therapeutic application for HNSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FUT6 was down-regulated in HNSCC tissues.
Fig. 2: The effects of FUT6 on cell proliferation in HNSCC cells.
Fig. 3: The effects of FUT6 on cell migration and invasion in HNSCC cells.
Fig. 4: In vivo tumor xenograft study.
Fig. 5: The effects of FUT6 on the EGFR signaling pathway and EMT in Cal-27, FaDU, and HSC-3 cells.
Fig. 6: FUT6 control EMT through EGF-induced EGFR/ERK/STAT signaling in Cal-27 and FaDU cells.

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Leemans C, Braakhuis B, Brakenhoff R. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.

    Article  CAS  Google Scholar 

  2. Siegel R, Miller K, Fuchs H, Jemal A. Cancer Statistics, 2021. CA: Cancer J Clin 2021;71:7–33.

    Google Scholar 

  3. Marur S, Forastiere A. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91:386–96.

    Article  Google Scholar 

  4. Ausoni S, Boscolo-Rizzo P, Singh B, Da Mosto M, Spinato G, Tirelli G, et al. Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev. 2016;35:413–26.

    Article  CAS  Google Scholar 

  5. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  Google Scholar 

  6. Liu H, Ma L, Cao B, Lin J, Han L, Li C, et al. Progress in research into the role of abnormal glycosylation modification in tumor immunity. Immunol Lett. 2021;229:8–17.

    Article  CAS  Google Scholar 

  7. Liu Y, Yen H, Chen C, Chen C, Cheng P, Juan Y, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA. 2011;108:11332–7.

    Article  CAS  Google Scholar 

  8. Liu H, Ma L, Lin J, Cao B, Qu D, Luo C, et al. Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res. 2020;155:104738.

    Article  CAS  Google Scholar 

  9. Tan F, Tang C, Exley R. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochemical Sci. 2015;40:342–50.

    Article  CAS  Google Scholar 

  10. Mereiter S, Balmaña M, Campos D, Gomes J, Reis C. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell. 2019;36:6–16.

    Article  CAS  Google Scholar 

  11. Mizuochi T, Taniguchi T, Shimizu A, Kobata A. Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol. 1982;129:2016–20.

    Article  CAS  Google Scholar 

  12. Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem. 1988;57:785–838.

    Article  CAS  Google Scholar 

  13. Liang L, Gao C, Li Y, Sun M, Xu J, Li H, et al. miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis. 2017;8:e2968.

    Article  CAS  Google Scholar 

  14. Muinelo-Romay L, Vázquez-Martín C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Expression and enzyme activity of alpha(1,6)fucosyltransferase in human colorectal cancer. Int J Cancer. 2008;123:641–6.

    Article  CAS  Google Scholar 

  15. Pan S, Liu Y, Liu Q, Xiao Y, Liu B, Ren X, et al. HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Biochimica Et Biophysica Acta Mol Cell Res. 2019;1866:750–60.

    Article  CAS  Google Scholar 

  16. Li N, Liu Y, Miao Y, Zhao L, Zhou H, Jia L. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life. 2016;68:764–75.

    Article  CAS  Google Scholar 

  17. Yan X, Lin Y, Liu S, Aziz F, Yan Q. Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed Pharmacother. 2015;70:299–304.

    Article  CAS  Google Scholar 

  18. de Albuquerque Vasconcelos J, de Almeida Ferreira S, de Lima A, de Melo Rêgo M, Bandeira A, de Lima Bezerra Cavalcanti C, et al. Comparing the immunoexpression of FUT3 and FUT6 between prostatic adenocarcinoma and benign prostatic hyperplasia. Acta Histochemica Et Cytochemica. 2013;46:105–9.

    Article  Google Scholar 

  19. Ito Y, Miyauchi A, Yoshida H, Uruno T, Nakano K, Takamura Y, et al. Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett. 2003;200:167–72.

    Article  CAS  Google Scholar 

  20. Escrevente C, Machado E, Brito C, Reis C, Stoeck A, Runz S, et al. Different expression levels of alpha3/4 fucosyltransferases and Lewis determinants in ovarian carcinoma tissues and cell lines. Int J Oncol. 2006;29:557–66.

    CAS  Google Scholar 

  21. Guo Q, Guo B, Wang Y, Wu J, Jiang W, Zhao S, et al. Functional analysis of α1,3/4-fucosyltransferase VI in human hepatocellular carcinoma cells. Biochem. Biophys. Res Commun. 2012;417:311–7.

    Article  CAS  Google Scholar 

  22. Chandler K, Alamoud K, Stahl V, Nguyen B, Kartha V, Bais M, et al. β-Catenin/CBP inhibition alters epidermal growth factor receptor fucosylation status in oral squamous cell carcinoma. Mol Omics. 2020;16:195–209.

    Article  CAS  Google Scholar 

  23. Chen Y, Chong Y, Cheng C, Ho C, Tsai H, Kasten F, et al. Identification of novel tumor markers for oral squamous cell carcinoma using glycoproteomic analysis. Clin Chim Acta 2013;420:45–53.

    Article  CAS  Google Scholar 

  24. Shen L, Xia M, Deng X, Ke Q, Zhang C, Peng F, et al. A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma. Cell Oncol. 2020;43:695–707.

    Article  CAS  Google Scholar 

  25. Reguigne-Arnould I, Couillin P, Mollicone R, Fauré S, Fletcher A, Kelly R, et al. Relative positions of two clusters of human alpha-L-fucosyltransferases in 19q (FUT1-FUT2) and 19p (FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19. Cytogenetics Cell Genet. 1995;71:158–62.

    Article  CAS  Google Scholar 

  26. Nieto M, Huang R, Jackson R, Thiery J. EMT: 2016. Cell. 2016;166:21–45.

    Article  CAS  Google Scholar 

  27. Choudhary K, Rohatgi N, Halldorsson S, Briem E, Gudjonsson T, Gudmundsson S, et al. EGFR signal-network reconstruction demonstrates metabolic crosstalk in EMT. PLoS Computational Biol. 2016;12:e1004924.

    Article  Google Scholar 

  28. Kalluri R, Weinberg R. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420–8.

    Article  CAS  Google Scholar 

  29. Olmeda D, Jordá M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 2007;26:1862–74.

    Article  CAS  Google Scholar 

  30. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  Google Scholar 

  31. Elloul S, Elstrand M, Nesland J, Tropé C, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.

    Article  CAS  Google Scholar 

  32. Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

    Article  CAS  Google Scholar 

  33. Sommariva M, Gagliano N. E-Cadherin in pancreatic ductal adenocarcinoma: a multifaceted actor during EMT. Cells. 2020;9:1040.

    Article  Google Scholar 

  34. Zhao Y, Cai C, Zhang M, Shi L, Wang J, Zhang H, et al. Ephrin-A2 promotes prostate cancer metastasis by enhancing angiogenesis and promoting EMT. J Cancer Res Clin Oncol. 2021;147:2013–23.

    Article  CAS  Google Scholar 

  35. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  Google Scholar 

  36. Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Cancer Res. 2020;39:16.

    Article  CAS  Google Scholar 

  37. Sun J, Chen L, Dong M. MiR-338-5p inhibits EGF-induced EMT in pancreatic cancer cells by targeting EGFR/ERK signaling. Front Oncol. 2021;11:616481.

    Article  Google Scholar 

  38. Zhang Z, Dong Z, Lauxen I, Filho M, Nör J. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 2014;74:2869–81.

    Article  CAS  Google Scholar 

  39. Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.

    Article  CAS  Google Scholar 

  40. Kalyankrishna S, Grandis J. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24:2666–72.

    Article  CAS  Google Scholar 

  41. Roepstorff K, Grandal M, Henriksen L, Knudsen S, Lerdrup M, Grøvdal L, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 2009;10:1115–27.

    Article  CAS  Google Scholar 

  42. Yarden Y, Shilo B. SnapShot: EGFR signaling pathway. Cell. 2007;131:1018.

    Article  Google Scholar 

  43. Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, et al. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 2019;26:426–42.

    Article  CAS  Google Scholar 

  44. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155–65.

    Article  CAS  Google Scholar 

  45. Strippoli A, Cocomazzi A, Basso M, Cenci T, Ricci R, Pierconti F, et al. c-MYC Expression is a possible keystone in the colorectal cancer resistance to EGFR inhibitors. Cancers. 2020;12:638.

    Article  CAS  Google Scholar 

  46. Kaszuba K, Grzybek M, Orłowski A, Danne R, Róg T, Simons K, et al. N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc Natl Acad Sci USA. 2015;112:4334–9.

    Article  CAS  Google Scholar 

  47. Azimzadeh Irani M, Kannan S, Verma C. Role of N-glycosylation in EGFR ectodomain ligand binding. Proteins. 2017;85:1529–49.

    Article  CAS  Google Scholar 

  48. Sharapov S, Shadrina A, Tsepilov Y, Elgaeva E, Tiys E, Feoktistova S, et al. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology. 2021;31:82–8.

    Article  CAS  Google Scholar 

  49. Liao C, An J, Yi S, Tan Z, Wang H, Li H, et al. FUT8 and protein core fucosylation in tumours: from diagnosis to treatment. J Cancer. 2021;12:4109–20.

    Article  CAS  Google Scholar 

  50. Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011;9:1608–20.

    Article  CAS  Google Scholar 

  51. Caramel J, Ligier M, Puisieux A. Pleiotropic roles for ZEB1 in cancer. Cancer Res. 2018;78:30–5.

    Article  CAS  Google Scholar 

  52. Erin N, Grahovac J, Brozovic A, Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 2020;53:100715.

    Article  Google Scholar 

  53. Liao C, Wang Q, An J, Long Q, Wang H, Xiang M, et al. Partial EMT in squamous cell carcinoma: a snapshot. Int J Biol Sci. 2021;17:3036–47.

    Article  CAS  Google Scholar 

  54. Goossens S, Vandamme N, Van Vlierberghe P, Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 2017;1868:584–91.

    Article  CAS  Google Scholar 

  55. Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19:1389–400.

    Article  CAS  Google Scholar 

  56. Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018;17:53.

    Article  Google Scholar 

  57. Hirakawa M, Takimoto R, Tamura F, Yoshida M, Ono M, Murase K, et al. Fucosylated TGF-β receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells. Br J Cancer. 2014;110:156–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Outstanding Young Talent Project of Zunyi Medical University (17zy-002), the Sixth Talent Foundation in Guizhou province (rcjd2019-9), and the National Natural Science Foundation of China (NSFC, 82160112).

Funding

This study was supported by the Outstanding Young Talent Project of Zunyi Medical University (17zy-002), the Sixth Talent Foundation in Guizhou province (rcjd2019-9), the Science and Technology Plan Project of Guizhou Province (QIAN KE HE JI CHU-ZK(2021)YI BAN 451), and the National Natural Science Foundation of China (82160112).

Author information

Authors and Affiliations

Authors

Contributions

JA and JL conceived and supervised the research. JA and QW provide the research foundation. CL and ZT complete the main cell and animal experiment. HL, ZT, and KY participated in the initial phase of experiments. XG participate in data analysis and figure preparation. XL review and edit the manuscript. QW and CL wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jianguo Liu or Jiaxing An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liao, C., Tan, Z. et al. FUT6 inhibits the proliferation, migration, invasion, and EGF-induced EMT of head and neck squamous cell carcinoma (HNSCC) by regulating EGFR/ERK/STAT signaling pathway. Cancer Gene Ther 30, 182–191 (2023). https://doi.org/10.1038/s41417-022-00530-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00530-w

This article is cited by

Search

Quick links