Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence

Abstract

ERG translocations are commonly involved in the initiation of prostate neoplasia, yet previous experimental approaches have not addressed mechanisms of oncogenic inception. Here, in a genetically engineered mouse model, combining TMPRSS2-driven ERG with KrasG12D led to invasive prostate adenocarcinomas, while ERG or KrasG12D alone were non-oncogenic. In primary prostate luminal epithelial cells, following inducible oncogenic Kras expression or Pten depletion, TMPRSS2-ERG suppressed oncogene-induced senescence, independent of TP53 induction and RB1 inhibition. Oncogenic KRAS and TMPRSS2-ERG synergized to promote tumorigenesis and metastasis of primary luminal cells. The presence of TMPRSS2-ERG compared to a wild-type background was associated with a stemness phenotype and with relatively increased RAS-induced differential gene expression for MYC and mTOR-regulated pathways, including protein translation and lipogenesis. In addition, mTOR inhibitors abrogated ERG-dependent senescence resistance. These studies reveal a previously unappreciated function whereby ERG expression primes preneoplastic cells for the accumulation of additional gene mutations by suppression of oncogene-induced senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMPRSS2-ERG synergized with KrasG12D to promote invasive adenocarcinoma in an in vivo mouse model.
Fig. 2: Characterization of primary prostate epithelial cell lines.
Fig. 3: Suppression of KrasG12V-induced senescence by TMPRSS2-ERG.
Fig. 4: Suppression of KrasG12V-induced senescence by TMPRSS2-ERG.
Fig. 5: Overexpression of hERG in WT-1 cells reversed KrasG12V oncogene-induced senescence.
Fig. 6: TMPRSS2-ERG expression decreased PTEN depletion-induced senescence.
Fig. 7: Classical senescence signaling occurs in TP53 null but not in TP53 intact primary prostate luminal epithelial cells.
Fig. 8: Bioinformatics analysis of differentially expressed genes in WT-1 iKrasG12V and T-E-2 iKrasG12V after RAS induction at day 0, day 3, and day 5.

Similar content being viewed by others

Data availability

RNA-seq datasets generated and analyzed during the current study are deposited into the BioProject database with ID: PRJNA801601

References

  1. Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  2. Arora K, Barbieri CE. Molecular subtypes of prostate cancer. Curr Oncol Rep. 2018;20:58.

    Article  PubMed  Google Scholar 

  3. Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J, McLeod DG, et al. Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol. 2008;21:67–75.

    Article  CAS  PubMed  Google Scholar 

  4. Birdsey GM, Shah AV, Dufton N, Reynolds LE, Osuna Almagro L, Yang Y, et al. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/beta-catenin signaling. Dev Cell. 2015;32:82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knudsen KJ, Rehn M, Hasemann MS, Rapin N, Bagger FO, Ohlsson E, et al. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes Dev. 2015;29:1915–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS factors in prostate cancer. Adv Exp Med Biol. 2019;1210:409–36.

    Article  CAS  PubMed  Google Scholar 

  7. Sandoval GJ, Pulice JL, Pakula H, Schenone M, Takeda DY, Pop M, et al. Binding of TMPRSS2-ERG to BAF chromatin remodeling complexes mediates prostate oncogenesis. Mol Cell. 2018;71:554–66 e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene. 2008;27:5348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10:177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, Graves BJ. Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Genes Dev. 2011;25:2147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casey OM, Fang L, Hynes PG, Abou-Kheir WG, Martin PL, Tillman HS, et al. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One. 2012;7:e41668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li F, Yuan Q, Di W, Xia X, Liu Z, Mao N, et al. ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. J Clin Invest. 2020;130:5924–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41:619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet. 2009;41:524–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mounir Z, Lin F, Lin VG, Korn JM, Yu Y, Valdez R, et al. TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Oncogene. 2015;34:3815–25.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S, et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med. 2013;19:1023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128:1238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu H, Blake S, Kusuma FK, Pearson RB, Kang J, Chan KT. Oncogene-induced senescence: from biology to therapy. Mech Ageing Dev. 2020;187:111229.

    Article  CAS  PubMed  Google Scholar 

  19. He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169:1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pearson HB, Phesse TJ, Clarke AR. K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res. 2009;69:94–101.

    Article  CAS  PubMed  Google Scholar 

  21. Scherl A, Li JF, Cardiff RD, Schreiber-Agus N. Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate. 2004;59:448–59.

    Article  CAS  PubMed  Google Scholar 

  22. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell. 2007;12:160–70.

    Article  CAS  PubMed  Google Scholar 

  23. Karthaus WR, Hofree M, Choi D, Linton EL, Turkekul M, Bejnood A, et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science. 2020;368:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kron KJ, Murison A, Zhou S, Huang V, Yamaguchi TN, Shiah YJ, et al. TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet. 2017;49:1336–45.

    Article  CAS  PubMed  Google Scholar 

  25. Cai C, Wang H, He HH, Chen S, He L, Ma F, et al. ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest. 2013;123:1109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19:439–53.

    Article  CAS  PubMed  Google Scholar 

  28. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016;76:5189–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dimauro T, David G. Ras-induced senescence and its physiological relevance in cancer. Curr Cancer Drug Targets. 2010;10:869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ricoult SJ, Yecies JL, Ben-Sahra I, Manning BD. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2016;35:1250–60.

    Article  CAS  PubMed  Google Scholar 

  31. Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O, et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell. 2010;17:376–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146:408–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arriaga JM, Panja S, Alshalalfa M, Zhao J, Zou M, Giacobbe A, et al. A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. Nat Cancer. 2020;1:1082–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang D, Lin K, Lu Y, Rycaj K, Zhong Y, Chao HP, et al. D–eveloping a novel two-dimensional culture system to enrich human prostate luminal progenitors that can function as a cell of origin for prostate cancer. Stem Cells Transl Med. 2017;6:748–60.

    Article  CAS  PubMed  Google Scholar 

  36. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72:1878–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA. 2007;104:13028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Civenni G, Malek A, Albino D, Garcia-Escudero R, Napoli S, Di Marco S, et al. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res. 2013;73:6816–27.

    Article  CAS  PubMed  Google Scholar 

  39. Lin CH, Lin C, Tanaka H, Fero ML, Eisenman RN. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS One. 2009;4:e7839.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten−/−TP53−/− prostate cancer model. Stem Cells. 2010;28:2129–40.

    Article  CAS  PubMed  Google Scholar 

  41. Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M, et al. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol. 2007;27:7538–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. JuanYin J, Tracy K, Zhang L, Munasinghe J, Shapiro E, Koretsky A, et al. Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin Exp Metastasis. 2009;26:403–14.

    Article  CAS  PubMed  Google Scholar 

  43. Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K, et al. AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 2014;74:4306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pegoraro G, Misteli T. High-Throughput Imaging for the discovery of cellular mechanisms of disease. Trends Genet. 2017;33:604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:276–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lun AT, Chen Y, Smyth GK. It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol Biol. 2016;1418:391–416.

    Article  PubMed  Google Scholar 

  47. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gianluca Pegoraro and Laurent Ozbun for their assistance at setting up and running Opera high throughput confocal imaging experiments and Neil Alilin for his assistance in managing mouse colonies and in vivo imaging.

Author information

Authors and Affiliations

Authors

Contributions

LF and KK conceived and designed the original research plans and supervised the research. LF, DL, and HP performed the experiments. JY performed in vivo orthotopic and intracardiac injections and supervised bioluminescent imaging of tumor growth. HY performed histological analysis of triple transgenic mice and evaluated IHC staining results. JB and BC analyzed RNA-seq data. LF and KK wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Kathleen Kelly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Li, D., Yin, J. et al. TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther 29, 1463–1476 (2022). https://doi.org/10.1038/s41417-022-00454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00454-5

Search

Quick links