Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pigment epithelium-derived factor, an anti-VEGF factor, delays ovarian cancer progression by alleviating polarization of tumor-associated macrophages

Abstract

Ovarian cancer (OC) is one of the most dangerous gynecological malignancies with no effective treatment so far. Pigment epithelium-derived factor (PEDF) has been reported to have ideal anti-tumor effects, but its relationship with the regulation of tumor-associated macrophage polarization is currently unclear. In this study, the mRNA expression of PEDF and macrophage markers were determined in OC tissues from clinic patients and five OC (A2780, SKOV3, CAOV3, OVCAR3, and OVCA433) cell lines through quantitative reverse transcription PCR. Afterwards, tumor growth, cell proliferation and apoptosis, and macrophage polarization in OC tumor-bearing mice with PEDF overexpression were recorded and investigated. Finally, the polarization of macrophages was explored in the presence of lentiviral PEDF overexpression, adipose triglyceride lipase (ATGL) and laminin receptor (LR) knockdown, and mitogen-activated protein kinase (MAPK) pathway inhibition. Our results suggest that PEDF mRNA level is significantly decreased in OC tissues and cells and has a significant negative correlation with OC progression and the level of tumor-related macrophage markers. Furthermore, OC tumors overexpressing PEDF show suppressed growth viability and increased apoptosis rate. The fluorescence activated cell sorting (FACS) analysis reveals that PEDF can promote macrophage polarization in OC tumors towards M1 subtype. Mechanistically, we found that ATGL and extracellular-regulated kinase 1/2 (ERK1/2) signaling are involved in the regulation of macrophage polarization in OC tumors by PEDF. Taken together, these data indicate that the role of PEDF in regulating the polarization of tumor-associated macrophages may make it a potential therapeutic strategy for the treatment of OC in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pigment epithelium-derived factor (PEDF) is down-regulated in ovarian cancer (OC) and correlates negatively with metastatic progression in OC patients.
Fig. 2: PEDF is associated with the polarization of macrophages in OC tissues and cells.
Fig. 3: PEDF slows OC progression in the tumor-bearing mice.
Fig. 4: PEDF decreases the polarization of tumor-associated M2 macrophages.
Fig. 5: PEDF modulates macrophage polarization through targeting adipose triglyceride lipase (ATGL) and extracellular-regulated kinase 1/2 (ERK1/2).

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding authors.

References

  1. Gogineni V, Morand S, Staats H, Royfman R, Devanaboyina M, Einloth K, et al. Current ovarian cancer maintenance strategies and promising new developments. J Cancer. 2021;12:38–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chatterjee J, Dai W, Aziz NHA, Teo PY, Wahba J, Phelps DL, et al. Clinical use of programmed cell death-1 and its ligand expression as discriminatory and predictive markers in ovarian cancer. Clin Cancer Res. 2017;23:3453–60.

    Article  CAS  PubMed  Google Scholar 

  3. Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS. The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol. 2013;33:137–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  CAS  PubMed  Google Scholar 

  6. Squadrito ML, De, Palma M. Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Asp Med. 2011;32:123–45.

    Article  CAS  Google Scholar 

  7. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laoui D, Van Overmeire E, Movahedi K, Van den Bossche J, Schouppe E, Mommer C, et al. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site. Immunobiology. 2011;216:1192–202.

    Article  CAS  PubMed  Google Scholar 

  9. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7:e50946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang B, Zhu SJ, Xiao SS, Xue M. MiR-217 inhibits M2-like macrophage polarization by suppressing secretion of interleukin-6 in ovarian cancer. Inflammation. 2019;42:1517–29.

    Article  PubMed  Google Scholar 

  13. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7:43076–87.

    Article  PubMed  PubMed Central  Google Scholar 

  14. He X, Cheng R, Benyajati S, Ma JX. PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clin Sci (Lond). 2015;128:805–23.

    Article  Google Scholar 

  15. Abe R, Shimizu T, Yamagishi S, Shibaki A, Amano S, Inagaki Y, et al. Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol. 2004;164:1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halin S, Wikstrom P, Rudolfsson SH, Stattin P, Doll JA, Crawford SE, et al. Decreased pigment epithelium-derived factor is associated with metastatic phenotype in human and rat prostate tumors. Cancer Res. 2004;64:5664–71.

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto K, Ishikawa H, Nishimura D, Hamasaki K, Nakao K, Eguchi K. Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology. 2004;40:252–9.

    Article  CAS  PubMed  Google Scholar 

  18. Johnston EK, Francis MK, Knepper JE. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2. Vitr Cell Dev Biol Anim. 2015;51:730–8.

    Article  CAS  Google Scholar 

  19. Seki R, Yamagishi S, Matsui T, Yoshida T, Torimura T, Ueno T, et al. Pigment epithelium-derived factor (PEDF) inhibits survival and proliferation of VEGF-exposed multiple myeloma cells through its anti-oxidative properties. Biochem Biophys Res Commun. 2013;431:693–7.

    Article  CAS  PubMed  Google Scholar 

  20. Tsuruhisa S, Matsui T, Koga Y, Sotokawauchi A, Yagi M, Yamagishi SI. Pigment epithelium-derived factor inhibits advanced glycation end product-induced proliferation, VEGF and MMP-9 expression in breast cancer cells via interaction with laminin receptor. Oncol Lett. 2021;22:629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takenaka K, Yamagishi S, Jinnouchi Y, Nakamura K, Matsui T, Imaizumi T. Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci. 2005;77:3231–41.

    Article  CAS  PubMed  Google Scholar 

  22. Morgan RJ Jr, Alvarez RD, Armstrong DK, Burger RA, Chen LM, Copeland L, et al. Ovarian cancer, version 2.2013. J Natl Compr Canc Netw. 2013;11:1199–209.

    Article  CAS  PubMed  Google Scholar 

  23. Cassetta L, Noy R, Swierczak A, Sugano G, Smith H, Wiechmann L, et al. Isolation of mouse and human tumor-associated macrophages. Adv Exp Med Biol. 2016;899:211–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pino PA, Cardona AE. Isolation of brain and spinal cord mononuclear cells using percoll gradients. J Vis Exp. 2011;2011:2348.

    Google Scholar 

  25. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernard A, Gao-Li J, Franco CA, Bouceba T, Huet A, Li Z. Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. J Biol Chem. 2009;284:10480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Notari L, Baladron V, Aroca-Aguilar JD, Balko N, Heredia R, Meyer C, et al. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem. 2006;281:38022–37.

    Article  CAS  PubMed  Google Scholar 

  29. Chavan SS, Hudson LK, Li JH, Ochani M, Harris Y, Patel NB, et al. Identification of pigment epithelium-derived factor as an adipocyte-derived inflammatory factor. Mol Med. 2012;18:1161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Neamatallah T. Mitogen-activated protein kinase pathway: a critical regulator in tumor-associated macrophage polarization. J Microsc Ultrastruct. 2019;7:53–56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  32. Sayal K, Gounaris I, Basu B, Freeman S, Moyle P, Hosking K, et al. Epirubicin, cisplatin, and capecitabine for primary platinum-resistant or platinum-refractory epithelial ovarian cancer: results of a retrospective, single-institution study. Int J Gynecol Cancer. 2015;25:977–84.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheung LW, Au SC, Cheung AN, Ngan HY, Tombran-Tink J, Auersperg N, et al. Pigment epithelium-derived factor is estrogen sensitive and inhibits the growth of human ovarian cancer and ovarian surface epithelial cells. Endocrinology. 2006;147:4179–91.

    Article  CAS  PubMed  Google Scholar 

  34. Phillips NJ, Ziegler MR, Radford DM, Fair KL, Steinbrueck T, Xynos FP, et al. Allelic deletion on chromosome 17p13.3 in early ovarian cancer. Cancer Res. 1996;56:606–11.

    CAS  PubMed  Google Scholar 

  35. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285:245–8.

    Article  CAS  PubMed  Google Scholar 

  36. Maik-Rachline G, Shaltiel S, Seger R. Extracellular phosphorylation converts pigment epithelium-derived factor from a neurotrophic to an antiangiogenic factor. Blood. 2005;105:670–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ek ET, Dass CR, Choong PF. PEDF: a potential molecular therapeutic target with multiple anti-cancer activities. Trends Mol Med. 2006;12:497–502.

    Article  CAS  PubMed  Google Scholar 

  38. Becerra SP, Sagasti A, Spinella P, Notario V. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. J Biol Chem. 1995;270:25992–9.

    Article  CAS  PubMed  Google Scholar 

  39. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:127.

    PubMed  PubMed Central  Google Scholar 

  40. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  41. Rohan TE, Xue X, Lin HM, D'Alfonso TM, Ginter PS, Oktay MH, et al. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J Natl Cancer Inst. 2014;106:dju136.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Al-Zoughbi W, Pichler M, Gorkiewicz G, Guertl-Lackner B, Haybaeck J, Jahn SW, et al. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia. Oncotarget. 2016;7:33832–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24:x16–21. Suppl 10

    Article  PubMed  Google Scholar 

  44. Labidi-Galy SI, Papp E, Hallberg D, Niknafs N, Adleff V, Noe M, et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun. 2017;8:1093.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Design and experimentation: RM, XC, YJ, and QX; supervision: QX; and manuscript writing: RM and QX.

Corresponding author

Correspondence to Qing Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

The present study was approved by the Ethics Review Committee of Shanghai Tenth People’s Hospital. Written informed consent was obtained from all participants before specimen collection.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Chu, X., Jiang, Y. et al. Pigment epithelium-derived factor, an anti-VEGF factor, delays ovarian cancer progression by alleviating polarization of tumor-associated macrophages. Cancer Gene Ther 29, 1332–1341 (2022). https://doi.org/10.1038/s41417-022-00447-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00447-4

Search

Quick links