Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FTO promotes Bortezomib resistance via m6A-dependent destabilization of SOD2 expression in multiple myeloma

Abstract

Drug resistance is the main reason for the failure of Bortezomib (Bort) in the treatment of multiple myeloma (MM), which seriously affects the efficacy of Bort. Therefore, the exploration of Bort resistance to treat MM will be very beneficial. Thus, this study aims to study the function and mechanism of Fat mass and obesity associated (FTO) on the Bort resistance of MM. In the present study, we demonstrated that FTO promotes Bort resistance via m6A-dependent destabilization of SOD2 expression in MM. These findings may provide a substantial evidence for the Bort resistance in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FTO was highly expressed in different MM cell lines.
Fig. 2: FTO promoted MM progression and Bort resistance.
Fig. 3: FTO interacted with SOD2.
Fig. 4: SOD2 was significantly downregulated in JJN3 cell lines and treatment with Bort.
Fig. 5: SOD2 suppressed MM progression and Bort resistance.
Fig. 6: FTO promoted MM progression and Bort resistance in vivo.
Fig. 7: FTO promoted Bort resistance in MM through m6A demethylation of SOD2.

Similar content being viewed by others

References

  1. Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol. 2016;43:676–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7:585–98.

    Article  CAS  PubMed  Google Scholar 

  3. Eslick R, Talaulikar D. Multiple myeloma: from diagnosis to treatment. Aust Fam Physician. 2013;42:684–8.

    PubMed  Google Scholar 

  4. Joshua DE, Bryant C, Dix C, Gibson J, Ho J. Biology and therapy of multiple myeloma. Med J Aust. 2019;210:375–80.

    Article  PubMed  Google Scholar 

  5. Gan H, Hong L, Yang F, Liu D, Jin L, Zheng Q. [Progress in epigenetic modification of mRNA and the function of m6A modification]. Sheng Wu Gong Cheng Xue Bao. 2019;35:775–83.

    CAS  PubMed  Google Scholar 

  6. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Fu J, Zhou Y. A review in research progress concerning m6A methylation and immunoregulation. Front Immunol. 2019;10:922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.

    Article  PubMed  Google Scholar 

  10. Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond). 2020;40:484–500.

    Article  PubMed  Google Scholar 

  11. Zhang L, Wan Y, Zhang Z, Jiang Y, Lang J, Cheng W, et al. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway. RNA Biol. 2021;18:1265–78.

    Article  PubMed  Google Scholar 

  12. Xiang M, Liu W, Tian W, You A, Deng D. RNA N-6-methyladenosine enzymes and resistance of cancer cells to chemotherapy and radiotherapy. Epigenomics. 2020;12:801–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation. Mol Carcinog. 2018;57:590–7.

    Article  CAS  PubMed  Google Scholar 

  14. Xiao P, Liu YK, Han W, Hu Y, Zhang BY, Liu WL. Exosomal delivery of FTO confers gefitinib resistance to recipient cells through ABCC10 regulation in an m6A-dependent manner. Mol Cancer Res. 2021;19:726–38.

    Article  CAS  PubMed  Google Scholar 

  15. Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H, Knop S. The diagnosis and treatment of multiple myeloma. Dtsch Arztebl Int. 2016;113:470–6.

    PubMed  PubMed Central  Google Scholar 

  16. Pawlyn C, Davies FE. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood. 2019;133:660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yankova E, Aspris D, Tzelepis K. The N6-methyladenosine RNA modification in acute myeloid leukemia. Curr Opin Hematol. 2021;28:80–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 2020;46:1958–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai H, Xu P, Chen B. Gene signatures and prognostic values of m6A-related genes in multiple myeloma. Curr Res Transl Med. 2021;69:103288.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang F, Tang X, Tang C, Hua Z, Ke M, Wang C, et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol. 2021;14:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52:621–9.

    PubMed  Google Scholar 

  23. Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK, et al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m(6)A-demethylation of FOXM1 and NANOG. Apoptosis. 2020;25:233–46.

    Article  CAS  PubMed  Google Scholar 

  24. Hurt EM, Thomas SB, Peng B, Farrar WL. Integrated molecular profiling of SOD2 expression in multiple myeloma. Blood. 2007;109:3953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hodge DR, Peng B, Pompeia C, Thomas S, Cho E, Clausen PA, et al. Epigenetic silencing of manganese superoxide dismutase (SOD-2) in KAS 6/1 human multiple myeloma cells increases cell proliferation. Cancer Biol Ther. 2005;4:585–92.

    Article  CAS  PubMed  Google Scholar 

  26. Song IS, Kim HK, Lee SR, Jeong SH, Kim N, Ko KS, et al. Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells. Int J Cancer. 2013;133:1357–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CW conceived and designed the experiments, LL & ML analyzed and interpreted the results of the experiments, CW, WW & ZJ performed the experiments.

Corresponding author

Correspondence to Chong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, L., Li, M. et al. FTO promotes Bortezomib resistance via m6A-dependent destabilization of SOD2 expression in multiple myeloma. Cancer Gene Ther 30, 622–628 (2023). https://doi.org/10.1038/s41417-022-00429-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00429-6

This article is cited by

Search

Quick links