Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy

Abstract

Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of modified and unmodified MSC-derived exosomes in cancer development.

Similar content being viewed by others

References

  1. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomedicine Pharmacother. 2020;125:110009.

    Article  CAS  Google Scholar 

  3. Mosallaei M, Simonian M, Ehtesham N, Karimzadeh MR, Vatandoost N, Negahdari B, et al. Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther. 2020;27:854–68.

    Article  CAS  PubMed  Google Scholar 

  4. Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019;13:961.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mooney R, Hammad M, Batalla‐Covello J, Abdul Majid A, Aboody KS. Concise review: neural stem cell‐mediated targeted cancer therapies. Stem Cells Transl Med. 2018;7:740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tewabe A, Abate A, Tamrie M, Seyfu A, Siraj EA. Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc. 2021;14:1711.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bulcha JT, Wang Y, Ma H, Tai PW, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6:1–24.

    Article  CAS  Google Scholar 

  8. Wang S, Sun F, Huang H, Chen K, Li Q-J, Zhang L, et al. The landscape of cell and gene therapies for solid tumors. Cancer Cell. 2021;39:7–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng. 2015;17:63–89.

    Article  CAS  PubMed  Google Scholar 

  10. Collins SA, Guinn B-A, Harrison PT, Scallan MF, O’Sullivan GC, Tangney M. Viral vectors in cancer immunotherapy: which vector for which strategy? Curr Gene Ther. 2008;8:66–78.

    Article  CAS  PubMed  Google Scholar 

  11. Chen YH, Keiser MS, Davidson BL. Viral vectors for gene transfer. Curr Protoc Mouse Biol. 2018;8:e58.

    Article  PubMed  Google Scholar 

  12. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes 2017;8:65.

    Article  PubMed Central  CAS  Google Scholar 

  13. Patil S, Gao Y-G, Lin X, Li Y, Dang K, Tian Y, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019;20:5491.

    Article  CAS  PubMed Central  Google Scholar 

  14. Lin W, Huang L, Li Y, Fang B, Li G, Chen L, et al. Mesenchymal stem cells and cancer: clinical challenges and opportunities. BioMed Res. Int. 2019;2019:1–12.

    Article  Google Scholar 

  15. Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal stromal/stem cells: a new era in the cell-based targeted gene therapy of cancer. Front Immunol. 2017;8:1770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int. 2012;2012:461718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nasrollahzadeh Sabet M, Movahedi Asl M, Kazemi Esfeh M, Nasrabadi N, Shakarami M, Alani B, et al. Mesenchymal stem cells as professional actors in gastrointestinal cancer therapy: from Naïve to genetically modified. Iran J Basic Med Sci. 2021;24:561–76.

    PubMed  PubMed Central  Google Scholar 

  19. Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res. 2018;196:1–16.

    Article  CAS  PubMed  Google Scholar 

  20. Liu S, Xu X, Liang S, Chen Z, Zhang Y, Qian A, et al. The application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy. Front Cell Dev Biol. 2020;8:619.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:1–18.

    Article  Google Scholar 

  22. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sin B 2016;6:287–96.

    Article  Google Scholar 

  23. Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M, et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J. 2015;2015:1–8.

    Google Scholar 

  24. Sun D, Zhuang X, Zhang S, Deng Z-B, Grizzle W, Miller D, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65:342–7.

    Article  CAS  PubMed  Google Scholar 

  25. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  Google Scholar 

  26. Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Taylor & Francis; 2020.

  27. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76:3666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8:1–12.

    Article  CAS  Google Scholar 

  29. Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D, et al. MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int. 2015;15:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yeo RWY, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65:336–41.

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen. Med. 2019;4:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35:e00191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18:e264.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  35. Witwer KW, Van Balkom BW, Bruno S, Choo A, Dominici M, Gimona M, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 2019;8:1609206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedenstein AJ, Gorskaja J, Kulagina N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.

    CAS  PubMed  Google Scholar 

  37. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–9.

    Article  CAS  PubMed  Google Scholar 

  38. Picinich SC, Mishra PJ, Mishra PJ, Glod J, Banerjee D. The therapeutic potential of mesenchymal stem cells: cell-& tissue-based therapy. Expert Opin Biol Ther. 2007;7:965–73.

    Article  CAS  PubMed  Google Scholar 

  39. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. 2010;1:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Planat-Benard V, Varin A, Casteilla L. MSCs and inflammatory cells crosstalk in regenerative medicine: concerted actions for optimized resolution driven by energy metabolism. Front Immunol. 2021;12:1–17.

    Article  CAS  Google Scholar 

  41. Baird SK. Mesenchymal stem cells: how can we realize their therapeutic potential in cancer therapy? J Clin Exp Pathol. 2015;5:2161–0681.1000206.

    Google Scholar 

  42. De Schauwer C, Meyer E, Van de Walle GR, Van Soom A. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 2011;75:1431–43.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020;20:114.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cheung TS, Bertolino GM, Giacomini C, Bornhäuser M, Dazzi F, Galleu A. Mesenchymal stromal cells for graft versus host disease: mechanism-based biomarkers. Front Immunol. 2020;11:1–15.

    Article  CAS  Google Scholar 

  45. Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation. Adv Wound Care. 2012;1:147–52.

    Article  Google Scholar 

  46. Reagan MR, Kaplan DL. Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells. 2011;29:920–7.

    Article  CAS  PubMed  Google Scholar 

  47. De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells. 2016;8:73–87.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care. 2015;4:623–30.

    Article  Google Scholar 

  49. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15:730–8.

    Article  CAS  PubMed  Google Scholar 

  50. Park JS, Chang D-Y, Kim J-H, Jung JH, Park J, Kim S-H, et al. Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells. Exp Mol Med. 2013;45:e10–e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Salari V, Mengoni F, Del Gallo F, Bertini G, Fabene PF. The anti-inflammatory properties of mesenchymal stem cells in epilepsy: possible treatments and future perspectives. Int J Mol Sci. 2020;21:9683.

    Article  CAS  PubMed Central  Google Scholar 

  52. Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther. 2021;12:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Javan MR, Khosrojerdi A, Moazzeni SM. New insights into implementation of mesenchymal stem cells in cancer therapy: prospects for anti-angiogenesis treatment. Front Oncol. 2019;9:840.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2007;21:304–10.

    Article  CAS  PubMed  Google Scholar 

  55. Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008;7:245–51.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009;23:925–33.

    Article  CAS  PubMed  Google Scholar 

  57. Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009;11:289–98. 1 p following 98.

    Article  CAS  PubMed  Google Scholar 

  58. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009;113:4197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang H-M, Zhang L-S. Influence of human bone marrow mesenchymal stem cells on proliferation of chronic myeloid leukemia cells. Chin J Cancer. 2009;28:29–32.

    Google Scholar 

  60. Chen Z, He X, He X, Chen X, Lin X, Zou Y, et al. Bone marrow mesenchymal stem cells ameliorate colitis-associated tumorigenesis in mice. Biochem Biophys Res Commun. 2014;450:1402–8.

    Article  CAS  PubMed  Google Scholar 

  61. Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett. 2021;26:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci. 2017;108:1939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, et al. Bidirectional and opposite effects of naïve mesenchymal stem cells on tumor growth and progression. Adv Pharm Bull. 2019;9:539–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW, et al. Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res. 2013;319:2216–29.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao M, Sachs PC, Wang X, Dumur CI, Idowu MO, Robila V, et al. Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biol Ther. 2012;13:782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rivera-Cruz CM, Shearer JJ, Figueiredo Neto M, Figueiredo ML. The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int. 2017;2017:4015039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Castro-Manrreza ME. Participation of mesenchymal stem cells in the regulation of immune response and cancer development. Bol Med Hosp Infant Mex. 2016;73:380–7.

    PubMed  Google Scholar 

  68. Takigawa H, Kitadai Y, Shinagawa K, Yuge R, Higashi Y, Tanaka S, et al. Mesenchymal stem cells induce epithelial to mesenchymal transition in colon cancer cells through direct cell-to-cell contact. Neoplasia 2017;19:429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Isola AL, Chen S. Exosomes: the messengers of health and disease. Curr Neuropharmacol. 2017;15:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Beach A, Zhang H-G, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J ovarian Res. 2014;7:1–11.

    Article  CAS  Google Scholar 

  72. Saeedi Borujeni MJ, Esfandiary E, Taheripak G, Codoñer‐Franch P, Alonso‐Iglesias E, Mirzaei H. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J Cell Biochem. 2018;119:1257–72.

    Article  CAS  PubMed  Google Scholar 

  73. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res. 2016;64:831–40.

    Article  CAS  PubMed  Google Scholar 

  75. Kim GB, Shon O-J, Seo M-S, Choi Y, Park WT, Lee GW. Mesenchymal stem cell-derived exosomes and their therapeutic potential for osteoarthritis. Biology 2021;10:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pachler K, Ketterl N, Desgeorges A, Dunai ZA, Laner-Plamberger S, Streif D, et al. An in vitro potency assay for monitoring the immunomodulatory potential of stromal cell-derived extracellular vesicles. Int J Mol Sci. 2017;18:1413.

    Article  PubMed Central  CAS  Google Scholar 

  78. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Taylor & Francis; 2014.

  79. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem. 2017;42:2242–54.

    Article  CAS  PubMed  Google Scholar 

  81. Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 2013;383:13–20.

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van, et al. Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood 2014;124:555–66.

    Article  CAS  PubMed  Google Scholar 

  83. Gu H, Ji R, Zhang X, Wang M, Zhu W, Qian H, et al. Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol Med Rep. 2016;14:3452–8.

    Article  CAS  PubMed  Google Scholar 

  84. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE. 2013;8:e84256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 2017;40:457–70.

    Article  CAS  Google Scholar 

  86. de Araujo Farias V, O’Valle F, Serrano-Saenz S, Anderson P, Andrés E, López-Peñalver J, et al. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer. 2018;17:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Liu Y, Song B, Wei Y, Chen F, Chi Y, Fan H, et al. Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy 2018;20:181–8.

    Article  CAS  PubMed  Google Scholar 

  88. Jia Z, Zhu H, Sun H, Hua Y, Zhang G, Jiang J, et al. Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/β-catenin signaling. Cancer Manag Res. 2020;12:8733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Controlled Release. 2014;192:262–70.

    Article  CAS  Google Scholar 

  90. Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, et al. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol. 2018;9:1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pastorakova A, Jakubechova J, Altanerova U, Altaner C. Suicide gene therapy mediated with exosomes produced by mesenchymal stem/stromal cells stably transduced with HSV thymidine kinase. Cancers 2020;12:1096.

    Article  CAS  PubMed Central  Google Scholar 

  92. Altanerova U, Jakubechova J, Benejova K, Priscakova P, Pesta M, Pitule P, et al. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer. 2019;144:897–908.

    Article  PubMed  CAS  Google Scholar 

  93. Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnol. 2018;16:103.

    Article  CAS  Google Scholar 

  94. Greco KA, Franzen CA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN. PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology 2016;91:241. e1–e7.

    Article  Google Scholar 

  95. Li M, Marin-Muller C, Bharadwaj U, Chow K-H, Yao Q, Chen C. MicroRNAs: control and loss of control in human physiology and disease. World J Surg. 2009;33:667–84.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lu J, Clark AG. Impact of microRNA regulation on variation in human gene expression. Genome Res. 2012;22:1243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011;38:724–33.

    Article  CAS  PubMed  Google Scholar 

  98. Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev. 2013;23:3–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Karimzadeh MR, Pourdavoud P, Ehtesham N, Qadbeigi M, Asl MM, Alani B, et al. Regulation of DNA methylation machinery by epi-miRNAs in human cancer: emerging new targets in cancer therapy. Cancer Gene Ther. 2021;28:157–74.

    Article  CAS  PubMed  Google Scholar 

  100. Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as potential therapeutics against cancer. J Oncol. 2020;2020:8029721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Fu Y, Chen J, Huang Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA. 2019;1:24.

    Article  Google Scholar 

  102. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer—an emerging concept. EBioMedicine 2016;12:34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chung M-J, Son J-Y, Park S, Park S-S, Hur K, Lee S-H, et al. Mesenchymal stem cell and microRNA therapy of musculoskeletal diseases. Int J Stem Cells. 2021;14:150–67.

    Article  PubMed  CAS  Google Scholar 

  104. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9:320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Laddha SV, Nayak S, Paul D, Reddy R, Sharma C, Jha P, et al. Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biol Direct. 2013;8:1–14.

    Article  CAS  Google Scholar 

  106. Chen J-S, Li H-S, Huang J-Q, Dong S-H, Huang Z-J, Yi W, et al. MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Lett. 2016;375:73–83.

    Article  CAS  PubMed  Google Scholar 

  107. Li Z, Shen J, Chan MT, Wu WKK. Micro RNA‐379 suppresses osteosarcoma progression by targeting PDK 1. J Cell Mol Med. 2017;21:315–23.

    Article  CAS  PubMed  Google Scholar 

  108. Ghafouri-Fard S, Shaterabadi D, Abak A, Shoorei H, Bahroudi Z, Taheri M, et al. An update on the role of miR-379 in human disorders. Biomed. Pharmacother. 2021;139:111553.

    Article  CAS  PubMed  Google Scholar 

  109. Khan S, Brougham CL, Ryan J, Sahrudin A, O’Neill G, Wall D, et al. miR-379 regulates cyclin B1 expression and is decreased in breast cancer. PloS ONE. 2013;8:e68753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li L, Zhang H. MicroRNA-379 inhibits cell proliferation and invasion in glioma via targeting metadherin and regulating PTEN/AKT pathway. Mol Med Rep. 2018;17:4049–56.

    CAS  PubMed  Google Scholar 

  111. Xu M, Qin S, Cao F, Ding S, Li M. MicroRNA-379 inhibits metastasis and epithelial-mesenchymal transition via targeting FAK/AKT signaling in gastric cancer. Int J Oncol. 2017;51:867–76.

    Article  CAS  PubMed  Google Scholar 

  112. Zhou F, Nie L, Feng D, Guo S, Luo RN. MicroRNA-379 acts as a tumor suppressor in non-small cell lung cancer by targeting the IGF‑1R-mediated AKT and ERK pathways. Oncol Rep. 2017;38:1857–66.

    Article  CAS  PubMed  Google Scholar 

  113. O’brien K, Khan S, Gilligan K, Zafar H, Lalor P, Glynn C, et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 2018;37:2137–49.

    Article  PubMed  CAS  Google Scholar 

  114. Shojaei S, Hashemi SM, Ghanbarian H, Sharifi K, Salehi M, Mohammadi-Yeganeh S. Delivery of miR-381-3p mimic by mesenchymal stem cell-derived exosomes inhibits triple negative breast cancer aggressiveness; an in vitro study. Stem Cell Rev Rep. 2021;17:1027–38.

    Article  CAS  PubMed  Google Scholar 

  115. Li Y, Deng X, Zeng X, Peng X. The role of Mir-148a in cancer. J Cancer. 2016;7:1233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tian Y, Wei W, Li L, Yang R. Down-regulation of miR-148a promotes metastasis by DNA methylation and is associated with prognosis of skin cancer by targeting TGIF2. Med Sci Monit. 2015;21:3798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li X, Jiang M, Chen D, Xu B, Wang R, Chu Y, et al. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res. 2018;37:1–15.

    CAS  Google Scholar 

  118. Cao H, Liu Z, Wang R, Zhang X, Yi W, Nie G, et al. miR-148a suppresses human renal cell carcinoma malignancy by targeting AKT2. Oncol Rep. 2017;37:147–54.

    Article  PubMed  Google Scholar 

  119. Lu L, Liu Q, Wang P, Wu Y, Liu X, Weng C, et al. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer. 2019;19:209.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yuan L, Liu Y, Qu Y, Liu L, Li H. Exosomes derived from microRNA-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression. Front Oncol. 2019;9:1076.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194–e.

    Article  CAS  PubMed  Google Scholar 

  122. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, et al. Mir-34: a new weapon against cancer? Mol Ther-nucleic acids. 2014;3:e195.

    Article  PubMed Central  CAS  Google Scholar 

  123. Vakhshiteh F, Rahmani S, Ostad SN, Madjd Z, Dinarvand R, Atyabi F. Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: a new approach for drug delivery. Life Sci. 2021;266:118871.

    Article  CAS  PubMed  Google Scholar 

  124. Islam F, Gopalan V, Vider J, Lu CT, Lam AK. MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights. Exp Mol Pathol. 2018;104:98–107.

    Article  CAS  PubMed  Google Scholar 

  125. Mansoori B, Mohammadi A, Ghasabi M, Shirjang S, Dehghan R, Montazeri V, et al. miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol. 2019;234:9816–25.

    Article  CAS  PubMed  Google Scholar 

  126. Hu T, Phiwpan K, Guo J, Zhang W, Guo J, Zhang Z, et al. MicroRNA-142-3p negatively regulates canonical Wnt signaling pathway. PloS ONE. 2016;11:e0158432–e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Naseri Z, Oskuee RK, Jaafari MR, Moghadam MF. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomed. 2018;13:7727.

    Article  CAS  Google Scholar 

  128. Oskuee RK, Jaafari MR. Delivery of LNA-antimiR-142-3p by mesenchymal stem cells-derived exosomes to breast cancer stem cells reduces tumorigenicity. Stem Cell Rev Rep. 2020;16:541–56.

    Article  PubMed  CAS  Google Scholar 

  129. Xue K, Yang J, Hu J, Liu J, Li X. MicroRNA-133b expression associates with clinicopathological features and prognosis in glioma. Artif Cells Nanomed Biotechnol. 2018;46:815–8.

    Article  CAS  PubMed  Google Scholar 

  130. Wang Q-Y, Zhou C-X, Zhan M-N, Tang J, Wang C-L, Ma C-N, et al. MiR-133b targets Sox9 to control pathogenesis and metastasis of breast cancer. Cell Death Dis. 2018;9:752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chang L, Lei X, Qin Y, Zhang X, Jin H, Wang C, et al. MicroRNA‑133b inhibits cell migration and invasion by targeting matrix metalloproteinase 14 in glioblastoma. Oncol Lett. 2015;10:2781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang Q, Fan X, Xu B, Pang Q, Teng L. miR-133b acts as a tumor suppressor and negatively regulates EMP2 in glioma. Neoplasma 2018;65:494–504.

    Article  CAS  PubMed  Google Scholar 

  133. Li C, Liu Z, Yang K, Chen X, Zeng Y, Liu J, et al. miR-133b inhibits glioma cell proliferation and invasion by targeting Sirt1. Oncotarget 2016;7:36247–54.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, et al. Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther. 2019;10:1–14.

    Article  CAS  Google Scholar 

  135. Xue H, Guo X, Han X, Yan S, Zhang J, Xu S, et al. MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1. Oncotarget 2016;7:4785–805.

    Article  PubMed  Google Scholar 

  136. Wang X-P, Deng X-L, Li L-Y. MicroRNA-584 functions as a tumor suppressor and targets PTTG1IP in glioma. Int J Clin Exp Pathol. 2014;7:8573–82.

    PubMed  PubMed Central  Google Scholar 

  137. Li Q, Li Z, Wei S, Wang W, Chen Z, Zhang L, et al. Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. J Exp Clin Cancer Res. 2017;36:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim R, Lee S, Lee J, Kim M, Kim WJ, Lee HW, et al. Exosomes derived from microRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy. BMB Rep. 2018;51:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li Y, Wang Y, Yu L, Sun C, Cheng D, Yu S, et al. miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer Lett. 2013;339:260–9.

    Article  CAS  PubMed  Google Scholar 

  140. Katakowski M, Zheng X, Jiang F, Rogers T, Szalad A, Chopp M. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest. 2010;28:1024–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Qian Z, Zhou S, Zhou Z, Yang X, Que S, Lan J, et al. miR‑146b‑5p suppresses glioblastoma cell resistance to temozolomide through targeting TRAF6. Oncol Rep. 2017;38:2941–50.

    Article  CAS  PubMed  Google Scholar 

  142. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335:201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lv Z, Yang L. MiR-124 inhibits the growth of glioblastoma through the downregulation of SOS1. Mol Med Rep. 2013;8:345–9.

    Article  PubMed  Google Scholar 

  144. Fowler A, Thomson D, Giles K, Maleki S, Mreich E, Wheeler H, et al. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer. 2011;47:953–63.

    Article  CAS  PubMed  Google Scholar 

  145. Cai S, Shi C-J, Lu J-X, Wang Y-P, Yuan T, Wang X-P. miR‑124‑3p inhibits the viability and motility of glioblastoma multiforme by targeting RhoG. Int J Mol Med. 2021;47:1–13.

    Article  Google Scholar 

  146. Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013;4:346–61.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lang FM, Hossain A, Gumin J, Momin EN, Shimizu Y, Ledbetter D, et al. Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-Oncol. 2018;20:380–90.

    Article  CAS  PubMed  Google Scholar 

  148. Sharif S, Ghahremani M, Soleimani M. Delivery of exogenous miR-124 to glioblastoma multiform cells by Wharton’s jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity. Stem Cell Rev Rep. 2018;14:236–46.

    Article  CAS  PubMed  Google Scholar 

  149. Yang Y, Dodbele S, Park T, Glass R, Bhat K, Sulman EP, et al. MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. J Neurooncol. 2019;145:23–34.

    Article  CAS  PubMed  Google Scholar 

  150. Liu Y, Duan N, Duan S. MiR-29a inhibits glioma tumorigenesis through a negative feedback loop of TRAF4/Akt signaling. BioMed Res Int. 2018;2018:2461363.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhao Y, Huang W, Kim T-M, Jung Y, Menon LG, Xing H, et al. MicroRNA-29a activates a multi-component growth and invasion program in glioblastoma. J Exp Clin Cancer Res. 2019;38:36.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zhang Z, Guo X, Guo X, Yu R, Qian M, Wang S, et al. MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging (Albany NY). 2021;13:5055.

    Article  CAS  Google Scholar 

  153. Li W, Wang L, Ji X-B, Wang L-H, Ge X, Liu W-T, et al. MiR-199a inhibits tumor growth and attenuates chemoresistance by targeting K-RAS via AKT and ERK signalings. Front Oncol. 2019;9:1071.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lei W, Yan C, Ya J, Yong D, Yujun B, Kai L. MiR-199a-3p affects the multi-chemoresistance of osteosarcoma through targeting AK4. BMC Cancer. 2018;18:631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Cui Y, Wu F, Tian D, Wang T, Lu T, Huang X, et al. miR-199a-3p enhances cisplatin sensitivity of ovarian cancer cells by targeting ITGB8. Oncol Rep. 2018;39:1649–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Li Y, Zhang G, Wu B, Yang W, Liu Z. miR-199a-5p represses protective autophagy and overcomes chemoresistance by directly targeting DRAM1 in acute myeloid leukemia. J Oncol. 2019;2019:5613417.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang XA, et al. Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY). 2019;11:5300.

    Article  CAS  Google Scholar 

  158. Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle. 2010;9:1031–6.

    Article  CAS  PubMed  Google Scholar 

  159. Wang B, Wu Z-H, Lou P-Y, Chai C, Han S-Y, Ning J-F, et al. Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN. Cell Oncol. 2019;42:783–99.

    Article  CAS  Google Scholar 

  160. Munoz JL, Rodriguez-Cruz V, Rameshwar P. High expression of miR-9 in CD133(+) glioblastoma cells in chemoresistance to temozolomide. J Cancer Stem Cell Res. 2015;3:e1003.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids. 2013;2:e126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Zhao Y, Ye G, Wang Y, Luo D. MiR-4461 inhibits tumorigenesis of renal cell carcinoma by targeting PPP1R3C. Cancer Biother Radiopharm. 2020;10:1089.

    Google Scholar 

  163. Dou L, Zhang Y. miR-4461 regulates the proliferation and metastasis of ovarian cancer cells and cisplatin resistance. Front Oncol. 2021;11:614035.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chen H-L, Li J-J, Jiang F, Shi W-J, Chang G-Y. MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer. Biosci Biotechnol Biochem. 2020;84:338–46.

    Article  CAS  PubMed  Google Scholar 

  165. Qian J, Jiang B, Li M, Chen J, Fang M. Prognostic significance of microRNA-16 expression in human colorectal cancer. World J Surg. 2013;37:2944–9.

    Article  PubMed  Google Scholar 

  166. Zhang W, Zhou F, Jiang D, Mao Y, Ye D. Association of the expression level of miR-16 with prognosis of solid cancer patients: a meta-analysis and bioinformatic analysis. Dis Markers. 2020;2020:8815270.

    Article  PubMed  PubMed Central  Google Scholar 

  167. You C, Liang H, Sun W, Li J, Liu Y, Fan Q, et al. Deregulation of the miR-16-KRAS axis promotes colorectal cancer. Sci Rep. 2016;6:37459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ren D, Zhao J, Sun Y, Li D, Meng Z, Wang B, et al. Overexpressed ITGA2 promotes malignant tumor aggression by up-regulating PD-L1 expression through the activation of the STAT3 signaling pathway. J Exp Clin Cancer Res. 2019;38:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ma L, Sun Y, Li D, Li H, Jin X, Ren D. Overexpressed ITGA2 contributes to paclitaxel resistance by ovarian cancer cells through the activation of the AKT/FoxO1 pathway. Aging 2020;12:5336–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA‐16‐5p‐containing exosomes derived from bone marrow‐derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol. 2019;234:21380–94.

    Article  CAS  PubMed  Google Scholar 

  171. Matboli M, Shafei AE, Ali MA, El-Din Ahmed TS, Naser M, Abdel-Rahman T, et al. Role of extracellular LncRNA-SNHG14/miRNA-3940-5p/NAP12 mRNA in colorectal cancer. Arch Physiol Biochem. 2019;6:1–7.

    Google Scholar 

  172. Ren K, Li Y, Lu H, Li Z, Han X. miR-3940-5p functions as a tumor suppressor in non-small cell lung cancer cells by targeting cyclin D1 and ubiquitin specific peptidase-28. Transl Oncol. 2017;10:80–9.

    Article  PubMed  Google Scholar 

  173. Li T, Wan Y, Su Z, Li J, Han M, Zhou C. Mesenchymal stem cell-derived exosomal microRNA-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6. Digestive Dis Sci. 2021;66:1916–27.

    Article  CAS  Google Scholar 

  174. Beaulieu J-F. Integrin α6β4 in colorectal cancer: expression, regulation, functional alterations and use as a biomarker. Cancers 2019;12:41.

    Article  PubMed Central  CAS  Google Scholar 

  175. Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70:5184–93.

    Article  CAS  PubMed  Google Scholar 

  176. Zhan Y, Zheng N, Teng F, Bao L, Liu F, Zhang M, et al. MiR-199a/b-5p inhibits hepatocellular carcinoma progression by post-transcriptionally suppressing ROCK1. Oncotarget 2017;8:67169–80.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Li Z, Zhou Y, Zhang L, Jia K, Wang S, Wang M, et al. microRNA-199a-3p inhibits hepatic apoptosis and hepatocarcinogenesis by targeting PDCD4. Oncogenesis 2020;9:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kim JH, Badawi M, Park J-K, Jiang J, Mo X, Roberts LR, et al. Anti-invasion and anti-migration effects of miR-199a-3p in hepatocellular carcinoma are due in part to targeting CD151. Int J Oncol. 2016;49:2037–45.

    Article  CAS  PubMed  Google Scholar 

  179. Ren K, Li T, Zhang W, Ren J, Li Z, Wu G. miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci. 2016;23:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Lou G, Chen L, Xia C, Wang W, Qi J, Li A, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res. 2020;39:1–9.

    Article  CAS  Google Scholar 

  181. Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–93.

    Article  CAS  PubMed  Google Scholar 

  182. Fu X, Calin GA. miR-122 and hepatocellular carcinoma: from molecular biology to therapeutics. EBioMedicine 2018;37:17–8.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310:160–9.

    CAS  PubMed  Google Scholar 

  184. Bai S, Nasser MW, Wang B, Hsu S-H, Datta J, Kutay H, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:1–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Xu Y, Lai Y, Cao L, Li Y, Chen G, Chen L. et al. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biol. 2020;10:1–16.

    Google Scholar 

  187. Setua S, Khan S, Doxtater K, Yallapu MM, Jaggi M, Chauhan SC. miR-145: revival of a dragon in pancreatic cancer. J Nat Sci. 2017;3:e332.

    PubMed  PubMed Central  Google Scholar 

  188. Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res. 2019;11:969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Han T, Yi X-P, Liu B, Ke M-J, Li Y-X. MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol Med Rep. 2015;11:4115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ding Y, Cao F, Sun H, Wang Y, Liu S, Wu Y, et al. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett. 2019;442:351–61.

    Article  CAS  PubMed  Google Scholar 

  191. Dong Y, Fu C, Guan H, Zhang Z, Zhou T, Li B. Prognostic significance of miR-126 in various cancers: a meta-analysis. Onco Targets Ther. 2016;9:2547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J, et al. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res. 2012;10:3–10.

    Article  CAS  PubMed  Google Scholar 

  193. Wu D-M, Wen X, Han X-R, Wang S, Wang Y-J, Shen M, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-126-3p inhibits pancreatic cancer development by targeting ADAM9. Mol Ther Nucleic Acids. 2019;16:229–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xu Q, Liu X, Cai Y, Yu Y, Chen W. RNAi-mediated ADAM9 gene silencing inhibits metastasis of adenoid cystic carcinoma cells. Tumor Biol. 2010;31:217–24.

    Article  CAS  Google Scholar 

  195. Chen SL, Ma M, Yan L, Xiong SH, Liu Z, Li S. et al. Clinical significance of exosomal miR-1231 in pancreatic cancer. Zhonghua Zhong Liu Za Zhi. 2019;41:46–9.

    CAS  PubMed  Google Scholar 

  196. Zhu L, Zhang K, Zhang C, Yu H, Zhu L. Low miR-1231 expression predicts poor prognosis in non-small-cell lung cancer and accelerates cell proliferation, migration and invasion. Biomark Med. 2021;15:831–40.

    Article  CAS  PubMed  Google Scholar 

  197. Zhang J, Zhang J, Qiu W, Zhang J, Li Y, Kong E, et al. MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma. J Neurooncol. 2018;139:547–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shang S, Wang J, Chen S, Tian R, Zeng H, Wang L, et al. Exosomal miRNA‐1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med. 2019;8:7728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hui Y, Li Y, Jing Y, Feng J-Q, Ding Y. miRNA-101 acts as a tumor suppressor in oral squamous cell carcinoma by targeting CX chemokine receptor 7. Am J Transl Res. 2016;8:4902–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang H, Guo Y, Mi N, Zhou L. miR-101-3p and miR-199b-5p promote cell apoptosis in oral cancer by targeting BICC1. Mol Cell Probes. 2020;52:101567.

    Article  CAS  PubMed  Google Scholar 

  201. Long F, Wang N, Wang J, Zheng Y. miR-101 inhibits AKT/mTOR and attenuates oral cancer cell colony formation and epithelial-mesenchymal transition. J Biomater Tissue Eng. 2020;10:1436–40.

    Google Scholar 

  202. Xie C, Du L-Y, Guo F, Li X, Cheng B. Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Mol Cell Biochem. 2019;458:11–26.

    Article  CAS  PubMed  Google Scholar 

  203. Sun C-C, Zhang L, Li G, Li S-J, Chen Z-L, Fu Y-F, et al. The lncRNA PDIA3P interacts with miR-185-5p to modulate oral squamous cell carcinoma progression by targeting cyclin D2. Mol Ther Nucleic Acids. 2017;9:100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wang L, Yin P, Wang J, Wang Y, Sun Z, Zhou Y, et al. Delivery of mesenchymal stem cells-derived extracellular vesicles with enriched miR-185 inhibits progression of OPMD. Artif Cells Nanomed Biotechnol. 2019;47:2481–91.

    Article  CAS  PubMed  Google Scholar 

  205. Xu H, Jiang J, Zhang J, Cheng L, Pan S, Li Y. MicroRNA‑375 inhibits esophageal squamous cell carcinoma proliferation through direct targeting of SP1. Exp Therap Med. 2019;17:1509–16.

    CAS  Google Scholar 

  206. Yi J, Jin L, Chen J, Feng B, He Z, Chen L, et al. MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin. 2017;49:159–69.

    Article  CAS  PubMed  Google Scholar 

  207. Fu C, Dong W, Wang Z, Li H, Qin Q, Li B. The expression of miR-21 and miR-375 predict prognosis of esophageal cancer. Biochem Biophys Res Commun. 2014;446:1197–203.

    Article  CAS  PubMed  Google Scholar 

  208. Winther M, Alsner J, Tramm T, Baeksgaard L, Holtved E, Nordsmark M. Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer. Acta Oncol. 2015;54:1582–91.

    Article  CAS  PubMed  Google Scholar 

  209. He Z, Li W, Zheng T, Liu D, Zhao S. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression. J Exp Clin Cancer Res. 2020;39:1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Jia Y, Ding X, Zhou L, Zhang L, Yang X. Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder cancer by targeting PRC1. Oncogene 2021;40:246–61.

    Article  CAS  PubMed  Google Scholar 

  211. Cai H, Yang X, Gao Y, Xu Z, Yu B, Xu T, et al. Exosomal microRNA-9-3p secreted from BMSCs downregulates ESM1 to suppress the development of bladder cancer. Mol Ther Nucleic Acids. 2019;18:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Liang Y, Zhang D, Li L, Xin T, Zhao Y, Ma R, et al. Exosomal microRNA-144 from bone marrow-derived mesenchymal stem cells inhibits the progression of non-small cell lung cancer by targeting CCNE1 and CCNE2. Stem Cell Res Ther. 2020;11:1–17.

    Article  CAS  Google Scholar 

  213. Wu H, Mu X, Liu L, Wu H, Hu X, Chen L, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-193a reduces cisplatin resistance of non-small cell lung cancer cells via targeting LRRC1. Cell Death Dis. 2020;11:1–14.

    Article  CAS  Google Scholar 

  214. Wan F-Z, Chen K-H, Sun Y-C, Chen X-C, Liang R-B, Chen L, et al. Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma. J Transl Med. 2020;18:1–19.

    Article  Google Scholar 

  215. Jing L, Hua X, Du Yuanna ZR, Junjun M. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag Res. 2020;12:13541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang K, Dong C, Chen M, Yang T, Wang X, Gao Y, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics 2020;10:411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445:381–7.

    Article  CAS  PubMed  Google Scholar 

  218. Jiang S, Mo C, Guo S, Zhuang J, Huang B, Mao X. Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2. J Exp Clin Cancer Res. 2019;38:1–16.

    Article  Google Scholar 

  219. Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y, et al. Exosomes derived from miR-143-overexpressing MSCs inhibit cell migration and invasion in human prostate cancer by downregulating TFF3. Mol Ther Nucleic Acids. 2019;18:232–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the whole work.

Corresponding author

Correspondence to Behrang Alani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, B., Dayeri, B., Zahedi, E. et al. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 29, 1105–1116 (2022). https://doi.org/10.1038/s41417-022-00427-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00427-8

This article is cited by

Search

Quick links