Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MiR-181c sensitizes ovarian cancer cells to paclitaxel by targeting GRP78 through the PI3K/Akt pathway

Abstract

Primary cytoreductive surgery with platinum-taxane-based chemotherapy is the standard treatment for ovarian cancer (OC) patients; however, resistance to chemotherapy is a contributing factor to OC mortality. Paclitaxel (PTX), the most widely used taxane, has become the first-line drug against OC. The molecular mechanism of PTX resistance is different from that of platinum-based agents and is still not completely elucidated. Our previous study showed that glucose-regulated protein 78 (GRP78) is involved in the resistance of OC cells to PTX. However, little is known regarding endogenous inhibitors of this gene. MicroRNAs (miRNAs) play critical roles in the regulation of gene expression; therefore, we sought to identify miRNA(s) with potential to target GRP78 under the hypothesis that miRNA(s) could serve as potential therapeutic targets. Here, we show that miR-181c, predicted to target GRP78, was downregulated in PTX-resistant OC cells and tissues. MiR-181c downregulated GRP78 expression and induced apoptosis by directly targeting its 3′-untranslated region (UTR). Overexpression of miR-181c sensitized resistant OC to PTX by inhibiting the PI3K/Akt pathway in vitro and in vivo. Taken together, our findings indicate that the delivery of miR-181c can efficiently suppress GRP78 expression and GRP78-mediated PTX resistance in OC and suggest that this strategy has therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GRP78 enhances paclitaxel resistance in ovarian cancer cells.
Fig. 2: Evidence of the inverse regulation of GRP78 by miR-181c.
Fig. 3: Deregulation of miR-181c is associated with paclitaxel sensitivity in ovarian cancer cells.
Fig. 4: GRP78 is a target of miR-181c.
Fig. 5: The silencing or overexpression of GRP78 reverses the effect of miR-181c on paclitaxel resistance.
Fig. 6: MiR-181c downregulation activates PI3K/Akt signalling.
Fig. 7: MiR-181c sensitises A2780/PTX cells to paclitaxel in vivo.

Similar content being viewed by others

References

  1. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27:161–74.

    PubMed  Google Scholar 

  2. Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol. 2015;309:C444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bookman MA. Optimal primary therapy of ovarian cancer. Ann Oncol. 2016;27 Suppl 1:i58–i62.

    Article  CAS  PubMed  Google Scholar 

  4. Stordal B, Pavlakis N, Davey R. A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship. Cancer Treat Rev. 2007;33:688–703.

    Article  CAS  PubMed  Google Scholar 

  5. Li SS, Ma J, Wong AST. Chemoresistance in ovarian cancer: exploiting cancer stem cell metabolism. J Gynecol Oncol. 2018;29:e32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Disco. 2006;5:219–34.

    Article  CAS  Google Scholar 

  7. Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res. 2012;31:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharm. 2014;740:364–78.

    Article  CAS  Google Scholar 

  9. Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharm Rev. 2012;64:706–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGuire WP, Ozols RF. Chemotherapy of advanced ovarian cancer. Semin Oncol. 1998;25:340–8.

    CAS  PubMed  Google Scholar 

  11. Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E, et al. Randomized intergroup trial of cisplatin paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst. 2000;92:699–708.

    Article  CAS  PubMed  Google Scholar 

  12. Muggia FM, Braly PS, Brady MF, Sutton G, Niemann TH, Lentz SL, et al. Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2000;18:106–15.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura K, Sawada K, Miyamoto M, Kinose Y, Yoshimura A, Ishida K, et al. Downregulation of miR-194-5p induces paclitaxel resistance in ovarian cancer cells by altering MDM2 expression. Oncotarget 2019;10:673–83.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Milross CG, Mason KA, Hunter NR, Chung WK, Peters LJ, Milas L. Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel. J Natl Cancer Inst. 1996;88:1308–14.

    Article  CAS  PubMed  Google Scholar 

  15. Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy resistance in advanced ovarian cancer patients. Biomark Cancer. 2019;11:1179299X19860815.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67:3496–9.

    Article  CAS  PubMed  Google Scholar 

  17. Roué G, Pérez-Galán P, Mozos A, López-Guerra M, Xargay-Torrent S, Rosich L, et al. The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood 2011;117:1270–9.

    Article  PubMed  CAS  Google Scholar 

  18. Baumeister P, Dong D, Fu Y, Lee AS. Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis. Mol Cancer Ther. 2009;8:1086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Virrey JJ, Dong D, Stiles C, Patterson JB, Pen L, Ni M, et al. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol Cancer Res. 2008;6:1268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 2007;67:9809–16.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang LY, Li PL, Xu A, Zhang XC. Involvement of GRP78 in the resistance of ovarian carcinoma cells to paclitaxel. Asian Pac J Cancer Prev. 2015;16:3517–22.

    Article  PubMed  Google Scholar 

  22. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah K, Rawal RM. Genetic and epigenetic modulation of drug resistance in cancer: challenges and opportunities. Curr Drug Metab. 2019;20:1114–31.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Lu Y, Chen Y, Lu W, Xie X. MicroRNA profile of paclitaxel-resistant serous ovarian carcinoma based on formalin-fixed paraffin-embedded samples. BMC Cancer. 2013;13:216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014;135:1286–96.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia MG, Alaniz LD, Cordo Russo RI, Alvarez E, Hajos SE. PI3K/Akt inhibition modulates multidrug resistance and activates NF-kappaB in murine lymphoma cell lines. Leuk Res. 2009;33:288–96.

    Article  CAS  PubMed  Google Scholar 

  27. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  28. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res. 2005;11:298–305.

    Article  CAS  PubMed  Google Scholar 

  29. Ferlini C, Raspaglio G, Mozzetti S, Distefano M, Filippetti F, Martinelli E, et al. Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance. Mol Pharm. 2003;64:51–8.

    Article  CAS  Google Scholar 

  30. Liu Z, Zhu G, Getzenberg RH, Veltri RW. The upregulation of PI3K/Akt and MAP kinase pathways is associated with resistance of microtubule-targeting drugs in prostate cancer. J Cell Biochem. 2015;116:1341–9.

    Article  CAS  PubMed  Google Scholar 

  31. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr. 1994;4:1–18.

    Article  PubMed  Google Scholar 

  32. Pootrakul L, Datar RH, Shi S-R, Cai J, Hawes D, Groshen SG, et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res. 2006;12:5987–93.

    Article  CAS  PubMed  Google Scholar 

  33. Lee E, Nichols P, Spicer D, Groshen S, Mimi CY, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 2006;66:7849–53.

    Article  CAS  PubMed  Google Scholar 

  34. Koomägi R, Mattern J, Volm M. Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res. 1999;19:4333–6.

    PubMed  Google Scholar 

  35. Kang J, Zhao G, Lin T, Tang S, Xu G, Hu S, et al. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett. 2013;339:247–59.

    Article  CAS  PubMed  Google Scholar 

  36. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234:5451–65.

    Article  CAS  PubMed  Google Scholar 

  37. Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339:107–15.

    Article  CAS  PubMed  Google Scholar 

  38. Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008;111:478–86.

    Article  CAS  PubMed  Google Scholar 

  39. Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C, et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 2014;132:739–44.

    Article  CAS  PubMed  Google Scholar 

  40. Rezaei T, Amini M, Hashemi ZS, Mansoori B, Rezaei S, Karami H, et al. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic Biol Med. 2020;152:432–54.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang WL, Zhang JH. miR-181c promotes proliferation via suppressing PTEN expression in inflammatory breast cancer. Int J Oncol. 2015;46:2011–20.

    Article  CAS  PubMed  Google Scholar 

  42. Ruan J, Lou S, Dai Q, Mao D, Ji J, Sun X. Tumor suppressor miR-181c attenuates proliferation, invasion, and self-renewal abilities in glioblastoma. Neuroreport 2015;26:66–73.

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y, Ma ZH, Li XG, Zhang WF, Wan J, Du LJ, et al. Iodine-125 irradiation inhibits invasion of gastric cancer cells by reactivating microRNA-181c expression. Oncol Lett. 2016;12:2789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yao L, Li W, Li F, Gao X, Wei X, Liu Z. MiR181c inhibits ovarian cancer metastasis and progression by targeting PRKCD expression. Int J Clin Exp Med. 2015;8:15198–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Han B, Huang J, Han Y, Hao J, Wu X, Song H, et al. The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol. 2019;125:544–56.

    Article  CAS  PubMed  Google Scholar 

  46. Mosakhani N, Mustjoki S, Knuutila S. Down-regulation of miR-181c in imatinib-resistant chronic myeloid leukemia. Mol Cytogenet. 2013;6:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. She X, Yu Z, Cui Y, Lei Q, Wang Z, Xu G, et al. miR-181 subunits enhance the chemosensitivity of temozolomide by Rap1B-mediated cytoskeleton remodeling in glioblastoma cells. Med Oncol. 2014;31:892.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao L, Li Y, Song X, Zhou H, Li N, Miao Y, et al. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget 2016;7:60074–86.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang H, Hu B, Wang Z, Zhang F, Wei H, Li L. miR-181c contributes to cisplatin resistance in non-small cell lung cancer cells by targeting Wnt inhibition factor 1. Cancer Chemother Pharm. 2017;80:973–84.

    Article  CAS  Google Scholar 

  50. Chen M, Wang M, Xu S, Guo X, Jiang J. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget 2015;6:44466–79.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Aktsignalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  PubMed  CAS  Google Scholar 

  52. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang YJ, Huang YP, Li ZL, Chen CH. GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and Akt pathway after epirubicin treatment in colon cancer DLD-1 cells. PLoS ONE. 2012;7:e35123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin Y, Wang Z, Liu L, Chen L. Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer. 2011;71:291–7.

    Article  PubMed  Google Scholar 

  55. Liu R, Li X, Gao W, Zhou Y, Wey S, Mitra SK, et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin Cancer Res. 2013;19:6802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen QY, Jiao DM, Wang J, Hu H, Tang X, Chen J, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget 2016;7:24510–26.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J Exp Clin Cancer Res. 2018;37:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jin J, Sun Z, Yang F, Tang L, Chen W, Guan X. miR-19b-3p inhibits breast cancer cell proliferation and reverses saracatinib-resistance by regulating PI3K/Akt pathway. Arch Biochem Biophys. 2018;645:54–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81602273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-ling Tang or Xin-chen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ly., Yu, Jy., Leng, Yl. et al. MiR-181c sensitizes ovarian cancer cells to paclitaxel by targeting GRP78 through the PI3K/Akt pathway. Cancer Gene Ther 29, 770–783 (2022). https://doi.org/10.1038/s41417-021-00356-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00356-y

This article is cited by

Search

Quick links