Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PRMT5: a putative oncogene and therapeutic target in prostate cancer

Abstract

Protein arginine methyltransferase 5 (PRMT5) was discovered two decades ago. The first decade focused on the biochemical characterization of PRMT5 as a regulator of many cellular processes in a healthy organism. However, over the past decade, evidence has accumulated to suggest that PRMT5 may function as an oncogene in multiple cancers via both epigenetic and non-epigenetic mechanisms. In this review, we focus on recent progress made in prostate cancer, including the role of PRMT5 in the androgen receptor (AR) expression and signaling and DNA damage response, particularly DNA double-strand break repair. We also discuss how PRMT5-interacting proteins that are considered PRMT5 cofactors may cooperate with PRMT5 to regulate PRMT5 activity and target gene expression, and how PRMT5 can interact with other epigenetic regulators implicated in prostate cancer development and progression. Finally, we suggest that targeting PRMT5 may be employed to develop multiple therapeutic approaches to enhance the treatment of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of PRMT5-driven regulation of AR signaling in prostate cancer.
Fig. 2: Role of PRMT5 in DNA damage response in prostate cancer.
Fig. 3: Potential interplay of PRMT5 with other epigenetic regulators.

Similar content being viewed by others

References

  1. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50.

    Article  CAS  PubMed  Google Scholar 

  2. Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 2007;113:50–87.

    Article  CAS  PubMed  Google Scholar 

  3. Jahan S, Davie JR. Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul 2015;57:173–84.

    Article  CAS  PubMed  Google Scholar 

  4. Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 2015;72:2041–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 2011;36:633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018;9:36705–18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fan Z, Kong X, Xia J, Wu X, Li H, Xu H, et al. The arginine methyltransferase PRMT5 regulates CIITA-dependent MHC II transcription. Biochim Biophys Acta 2016;1859:687–96.

    Article  CAS  PubMed  Google Scholar 

  8. Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M, et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 2015;30:1–11.

    Google Scholar 

  9. Chen H, Lorton B, Gupta V, Shechter DA. TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene 2017;36:373–86.

    Article  CAS  PubMed  Google Scholar 

  10. La Vignera S, Condorelli RA, Russo GI, Morgia G, Calogero AE. Endocrine control of benign prostatic hyperplasia. Andrology 2016;4:404–11.

    Article  PubMed  CAS  Google Scholar 

  11. Snow O, Lallous N, Singh K, Lack N, Rennie P, Cherkasov A. Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treat Rev 2019;81:101871.

    Article  CAS  PubMed  Google Scholar 

  12. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cucchiara V, Yang JC, Mirone V, Gao AC, Rosenfeld MG, Evans CP. Epigenomic regulation of androgen receptor signaling: potential role in prostate cancer therapy. Cancers 2017;9:9.

    Article  PubMed Central  CAS  Google Scholar 

  14. Nakayama T, Watanabe M, Suzuki H, Toyota M, Sekita N, Hirokawa Y, et al. Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Investig 2000;80:1789–96.

    Article  CAS  PubMed  Google Scholar 

  15. Shiota M, Takeuchi A, Yokomizo A, Kashiwagi E, Tatsugami K, Naito S. Methyltransferase inhibitor adenosine dialdehyde suppresses androgen receptor expression and prostate cancer growth. J Urol 2012;188:300–6.

    Article  CAS  PubMed  Google Scholar 

  16. Deng X, Shao G, Zhang H-T, Li C, Zhang D, Cheng L, et al. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene 2016;36:1–9.

    Google Scholar 

  17. Beketova E, Fang S, Owens JL, Liu S, Chen X, Zhang Q, et al. Protein arginine methyltransferase 5 promotes pICln-dependent androgen receptor transcription in castration-resistant prostate cancer. Cancer Res 2020;80:4904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Migliori V, Müller J, Phalke S, Low D, Bezzi M, Mok WC, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 2012;19:136–45.

    Article  CAS  PubMed  Google Scholar 

  19. Faber PW, Van Rooij HCJ, Schipper HJ, Brinkmann AO, Trapman J. Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem. 1993;268:9296–301.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu C, Hou X, Zhu J, Jiang C, Wei W. Expression of miR-30c and miR-29b in prostate cancer and its diagnostic significance. Oncol Lett 2018;16:3140–4.

    PubMed  PubMed Central  Google Scholar 

  21. Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene 2019;38:4977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mongiardi MP, Savino M, Bartoli L, Beji S, Nanni S, Scagnoli F, et al. Myc and Omomyc functionally associate with the Protein Arginine Methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep. 2015;5:15494.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koh CM, Bezzi M, Low DHP, Ang WX, Teo SX, Gay FPH, et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 2015;523:96–100.

    Article  CAS  PubMed  Google Scholar 

  24. Karkhanis V, Alinari L, Ozer HG, Chung J, Zhang X, Sif S, et al. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. J Biol Chem 2020;295:1165–80.

    Article  PubMed  Google Scholar 

  25. Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J Clin Invest 2019;129:3924–40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 2016;30:563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park JH, Szemes M, Vieira GC, Melegh Z, Malik S, Heesom KJ. et al. Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells. Mol Oncol. 2015;9:617–27.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, et al. NF-κB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 2009;175:489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas-Jardin SE, Dahl H, Nawas AF, Bautista M, Delk NA. NF-κB signaling promotes castration-resistant prostate cancer initiation and progression. Pharmacol Ther 2020;19:107538.

    Article  CAS  Google Scholar 

  30. Harris DP, Chandrasekharan UM, Bandyopadhyay S, Willard B, DiCorleto PE. PRMT5-mediated methylation of NF-κB p65 at Arg174 is required for endothelial CXCL11 gene induction in response to TNF-α and IFN-γ costimulation. PLoS ONE 2016;11:e0148905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB. et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci USA. 2013;110:13516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alimirah F, Panchanathany R, Cheny J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53. Neoplasia 2007;9:1152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y, et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov 2015;5:288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hosohata K, Li P, Hosohata Y, Qin J, Roeder RG, Wang Z. Purification and identification of a novel complex which is involved in androgen receptor-dependent transcription. Mol Cell Biol. 2003;23:7019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mounir Z, Korn JM, Westerling T, Lin F, Kirby CA, Schirle M, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor. Elife 2016;5:e13964.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou L, Wu H, Lee P, Wang Z. Roles of the androgen receptor cofactor p44 in the growth of prostate epithelial cells. J Mol Endocrinol 2006;37:283–300.

    Article  CAS  PubMed  Google Scholar 

  37. Liu S, Kumari S, Hu Q, Senapati D, Venkadakrishnan VB, Wang D, et al. A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. Elife 2017;6:e28482.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 2015;66:129–43.

    Article  CAS  PubMed  Google Scholar 

  39. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, et al. Arginine methylation regulates the p53 response. Nat Cell Biol 2008;10:1431–9.

    Article  CAS  PubMed  Google Scholar 

  40. Owens JL, Beketova E, Liu S, Tinsley SL, Asberry AM, Deng X, et al. PRMT5 cooperates with pICln to function as a master epigenetic activator of DNA double-strand break repair genes. iScience 2020;23:100750.

    Article  CAS  PubMed  Google Scholar 

  41. He W, Ma X, Yang X, Zhao Y, Qiu J, Hang H. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage. Nucleic Acids Res 2011;39:4719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N, et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 2015;6:8419.

    Article  CAS  PubMed  Google Scholar 

  43. Rieger KE, Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 2004;32:4786–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013;3:1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goodwin JF, Schiewer MJ, Dean JL, Schrecengost RS, de Leeuw R, Han S, et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov 2013;3:1254–71.

    Article  CAS  PubMed  Google Scholar 

  46. Asim M, Tarish F, Zecchini HI, Sanjiv K, Gelali E, Massie CE, et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun 2017;8:374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Radzisheuskaya A, Shliaha PV, Grinev V, Lorenzini E, Kovalchuk S, Shlyueva D, et al. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat Struct Mol Biol 2019;26:999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Braun CJ, Stanciu M, Boutz PL, Patterson JC, Calligaris D, Higuchi F, et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 2017;32:411–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan DQ, Li Y, Yang C, Li J, Tan SH, Chin DWL, et al. PRMT5 modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells. Cell Rep. 2019;26:2316–28.

    Article  CAS  PubMed  Google Scholar 

  50. Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, et al. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res 2014;181:1–8.

    Article  CAS  PubMed  Google Scholar 

  51. Hamard PJ, Santiago GE, Liu F, Karl DL, Martinez C, Man N, et al. PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes. Cell Rep. 2018;24:2643–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, et al. PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a key regulator of homologous recombination. Mol Cell 2017;65:900–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scoumanne A, Zhang J, Chen X. PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 2009;37:4965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho E-C, Zheng S, Munro S, Liu G, Carr SM, Moehlenbrink J, et al. Arginine methylation controls growth regulation by E2F-1. EMBO J 2012;31:1785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu L, Yang X, Duan X, Cui L, Li G. Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway. Sci Rep. 2014;4:4505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, et al. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 2012;47:444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y, et al. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res 2018;46:5601–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 2001;21:8289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, et al. RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J Biol Chem 2011;286:1976–86.

    Article  CAS  PubMed  Google Scholar 

  60. Yang M, Lin X, Segers F, Suganthan R, Hildrestrand GA, Rinholm JE, et al. OXR1A, a coactivator of PRMT5 regulating histone arginine methylation. Cell Rep 2020;30:4165–78.

    Article  CAS  PubMed  Google Scholar 

  61. Lacroix M, Messaoudi SEL, Rodier G, Le Cam A, Sardet C, Fabbrizio E. The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 2008;9:452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pesiridis GS, Diamond E, Van Duyne GD. Role of pICLn in methylation of Sm proteins by PRMT5. J Biol Chem 2009;284:21347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saha K, Adhikary G, Eckert RL. MEP50/PRMT5 reduces gene expression by histone arginine methylation and this is reversed by PKCd/p38d signaling. J Invest Dermatol 2016;136:214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li M, An W, Xu L, Lin Y, Su L, Liu X. The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells. J Exp Clin Cancer Res 2019;38:64.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Favia A, Salvatori L, Nanni S, Iwamoto-Stohl LK, Valente S, Mai A, et al. The protein arginine methyltransferases 1 and 5 affect Myc properties in glioblastoma stem cells. Sci Rep 2019;9:15925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gao G, Zhang L, Villarreal OD, He W, Su D, Bedford E, et al. PRMT1 loss sensitizes cells to PRMT5 inhibition. Nucleic Acids Res 2019;47:5038–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Collins CC, Volik SV, Lapuk AV, Wang Y, Gout PW, Wu C, et al. Next generation sequencing of prostate cancer from a patient identifies a deficiency of methylthioadenosine phosphorylase, an exploitable tumor target. Mol Cancer Ther 2012;11:775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Almeida-Rios D, Graça I, Vieira FQ, Ramalho-Carvalho J, Pereira-Silva E, Martins AT, et al. Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer. Oncotarget 2016;7:53018–28.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xu Z, He Y, Ju J, Rank G, Cerruti L, Ma C, et al. The role of WDR5 in silencing human fetal globin gene expression. Haematologica 2012;97:1632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lorton BM, Harijan RK, Burgos ES, Bonanno JB, Almo SC, Shechter D. A binary arginine methylation switch on histone H3 arginine 2 regulates its interaction with WDR5. Biochemistry. 2020. 10.1021/acs.biochem.0c00035.

  71. Jain K, Jin CY, Clarke SG. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc Natl Acad Sci USA 2017;114:10101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X. et al. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev. 2012;26:2749–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Majumder S, Liu Y, Ford OH, Mohler JL, Whang YE. Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 2006;66:1292–301.

    Article  CAS  PubMed  Google Scholar 

  74. Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol 2019;26:880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deb G, Thakur VS, Gupta S. Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond. Epigenetics 2013;8:464–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 2012;338:1465–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim J, Lee Y, Lu X, Song B, Fong KW, Cao Q. et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018;25:2808–20.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355:78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shankar E, Franco D, Iqbal O, Moreton S, Kanwal R, Gupta S. Dual targeting of EZH2 and androgen receptor as a novel therapy for castration-resistant prostate cancer. Toxicol Appl Pharmacol 2020;404:115200.

    Article  CAS  PubMed  Google Scholar 

  80. Tae S, Karkhanis V, Velasco K, Yaneva M, Erdjument-Bromage H, Tempst P, et al. Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic Acids Res 2011;39:5424–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chung J, Karkhanis V, Tae S, Yan F, Smith P, Ayers LW, et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) Silencing. J Biol Chem 2013;288:35534–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Furuno K, Masatsugu T, Sonoda M, Sasazuki T, Yamamoto K. Association of Polycomb group SUZ12 with WD-repeat protein MEP50 that binds to histone H2A selectively in vitro. Biochem Biophys Res Commun 2006;345:1051–8.

    Article  CAS  PubMed  Google Scholar 

  83. Liu F, Xu Y, Lu X, Hamard P-J, Karl DL, Man N, et al. PRMT5-mediated histone arginine methylation antagonizes transcriptional repression by polycomb complex PRC2. Nucleic Acids Res 2020;48:2956–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu Q, Wang G, Li Q, Jiang W, Kim J-S, Wang R, et al. Polycomb group proteins EZH2 and EED directly regulate androgen receptor in advanced prostate cancer. Int J Cancer 2019;145:415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim JY, Banerjee T, Vinckevicius A, Luo Q, Parker JB, Baker MR, et al. A role for WDR5 in integrating threonine 11 phosphorylation to lysine 4 methylation on histone H3 during androgen signaling and in prostate cancer. Mol Cell 2014;54:613–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao L, Wu G, Zhu J, Tan Z, Shi D, Wu X, et al. Genotoxic stress-triggered β-catenin/JDP2/PRMT5 complex facilitates reestablishing glutathione homeostasis. Nat Commun 2019;10:3761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Verdone L, Agricola E, Caserta M, Di Mauro E. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 2006;5:209–21.

    Article  CAS  PubMed  Google Scholar 

  88. Jin L, Garcia J, Chan E, De La Cruz C, Segal E, Merchant M, et al. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res 2017;77:5564–75.

    Article  CAS  PubMed  Google Scholar 

  89. Shin SH, Lee GY, Lee M, Kang J, Shin HW, Chun YS, et al. Aberrant expression of CITED2 promotes prostate cancer metastasis by activating the nucleolin-AKT pathway. Nat Commun 2018;9:4113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, et al. Histone H4 acetylation differentially modulates arginine methylation by an in cis mechanism. J Biol Chem 2011;286:20323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, Kumar J, et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 2003;23:7475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A. et al. PRMT5-mediated regulation of developmental myelination. Nat Commun. 2018;9:2840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Joseph DB, Strand DW, Vezina CM. DNA methylation in development and disease: an overview for prostate researchers. Am J Clin Exp Urol 2018;6:197–218.

    PubMed  PubMed Central  Google Scholar 

  94. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 2009;16:304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu X, Zhang J, Liu L, Jiang Y, Ji J, Yan R, et al. Protein arginine methyltransferase 5-mediated epigenetic silencing of IRX1 contributes to tumorigenicity and metastasis of gastric cancer. Biochim Biophys Acta 2018;1864:2835–44.

    Article  CAS  Google Scholar 

  96. Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WAM, Cohen A, Lasonder E, et al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 2006;26:843–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chang AJ, Autio KA, Roach M, Scher HI. High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol 2014;11:308–23.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: A multi-institutional prospective study. J Clin Oncol 2018;36:2492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K, Bocchinfuso WP, et al. LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med Chem Lett 2018;9:612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 2015;11:432–7.

    Article  CAS  PubMed  Google Scholar 

  101. Gulla A, Hideshima T, Anderson KC. PRMT5 inhibitors on the (myeloma) road. Oncotarget 2018;9:36646–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Marjon K, Cameron MJ, Quang P, Clasquin MF, Mandley E, Kunii K, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep 2016;15:574–87.

    Article  CAS  PubMed  Google Scholar 

  103. Pollack BP, Kotenko SV, He W, Izotova LS, Barnoski BL, Pestka S. The human homologue of the yeast proteins Skb1 and Hs17p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem 1999;274:31531–42.

    Article  CAS  PubMed  Google Scholar 

  104. Serio J, Ropa J, Chen W, Mysliwski M, Saha N, Chen L, et al. The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene 2018;37:450–60.

    Article  CAS  PubMed  Google Scholar 

  105. Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. PLoS ONE 2012;7:e44033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by following grants: U.S. Army Medical Research Acquisition Activity, Prostate Cancer Research Program (PC11190, PC120512, PC150697), NCI R01CA212403 and P30CA082709, Purdue University Center for Cancer Research Small Grants, and Purdue Research Foundation Research Grant. J. L. Owens was supported by the Indiana Clinical and Translational Sciences Institute (CTSI) Pre-Doctoral Fellowship, which was made possible with partial support from Grant Numbers TL1 TR001107, TL1 TR002531, UL1 TR001108, and UL1 TR002529 (A. Shekhar, PI) from the NIH, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. A. M. Asberry was supported by NIH T32 Grant NIH T32GM125620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Deng Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beketova, E., Owens, J.L., Asberry, A.M. et al. PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther 29, 264–276 (2022). https://doi.org/10.1038/s41417-021-00327-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00327-3

This article is cited by

Search

Quick links