Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA-double strand breaks enhance the expression of major histocompatibility complex class II through the ATM-NF-κΒ-IRF1-CIITA pathway

Abstract

Major histocompatibility complex class II (MHC II) is important for the adaptive immune response because MHC II presents processed antigens to a cluster of differentiation 4 (CD4)-positive T-cells. Conventional doses of chemotherapeutic agents induce tumor cell death by causing DNA double-strand breaks (DSBs). However, cellular responses caused by sub-lethal doses of chemotherapeutic agents are poorly understood. In this study, using low doses of chemotherapeutic agents, we showed that DSBs enhanced the expression of MHC II on cells that originate from antigen-presenting cells (APCs). These agents induced the MHC class II transactivator (CIITA), the master regulator of MHC II, and interferon regulatory factor 1 (IRF1), a transcription factor for CIITA. Short hairpin RNA against IRF1 suppressed chemotherapeutic agent-induced CIITA expression, whereas exogenous expression of IRF1 induced CIITA. Inhibition of ataxia-telangiectasia mutated (ATM), a DSB-activated kinase, suppressed induction of IRF1, CIITA, and MHC II. Similar results were observed by inhibiting NF-κB, a downstream target of ATM. These results suggest that DSBs induce MHC II activity via the ATM-NF-κB-IRF1–CIITA pathway in cells that intrinsically present antigens. Additionally, chemotherapeutic agents induced T-cell regulatory molecules. Our findings suggest that chemotherapeutic agents enhance the antigen presentation activity of APCs for T-cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemotherapeutic agents enhance MHC II expression in cells originating from APCs.
Fig. 2: MEL induces the expression of CIITA and IRF1 in MM cells.
Fig. 3: ATM is required for MEL-induced expression of MHC II, CIITA, and IRF1.
Fig. 4: NF-κB is required for MEL-induced expression of MHC II, CIITA, and IRF1.
Fig. 5: Overexpression of c-MYC induces DSBs and the expression of IRF1, CIITA, and MHC II.
Fig. 6: MEL induces CD86, CD137L, PD1, and CD70.
Fig. 7: A hypothetical model of DSBs-activated tumor immunity through MHC II expression.

Similar content being viewed by others

Data availability

Microarray data from this study have been deposited in the NCBI Gene Expression Omnibus (GEO) database. The GEO accession number is GSE151040.

References

  1. Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell. 2002;109(Suppl):S21–33.

    Article  CAS  PubMed  Google Scholar 

  2. LeibundGut-Landmann S, Waldburger JM, Krawczyk M, Otten LA, Suter T, Fontana A, et al. Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol. 2004;34:1513–25.

    Article  CAS  PubMed  Google Scholar 

  3. Boss JM, Jensen PE. Transcriptional regulation of the MHC class II antigen presentation pathway. Curr Opin Immunol. 2003;15:105–11.

    Article  CAS  PubMed  Google Scholar 

  4. Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol. 2006;27:405–12.

    Article  CAS  PubMed  Google Scholar 

  5. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guleria A, Chandna S. ATM kinase: Much more than a DNA damage responsive protein. DNA Repair. 2016;39:1–20.

    Article  CAS  PubMed  Google Scholar 

  8. Gaillard H, Garcia-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15:276–89.

    Article  CAS  PubMed  Google Scholar 

  9. Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015;43:2489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15:1139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 2018;215:1287–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20:648–59.

    Article  CAS  PubMed  Google Scholar 

  13. Kareva I, Waxman DJ, Lakka, Klement G. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 2015;358:100–6.

    Article  CAS  PubMed  Google Scholar 

  14. Oda T, Sekimoto T, Kurashima K, Fujimoto M, Nakai A, Yamashita T. Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J Cell Sci. 2018;131:jcs210724.

  15. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12:335–48.

    Article  CAS  PubMed  Google Scholar 

  16. Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 2012;150:1182–95.

    Article  CAS  PubMed  Google Scholar 

  17. Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011;11:467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prevo R, Fokas E, Reaper PM, Charlton PA, Pollard JR, McKenna WG, et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther. 2012;13:1072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta. 2014;1845:84–89.

    CAS  PubMed  Google Scholar 

  20. Zhou H, Kawamura K, Yanagihara H, Kobayashi J, Zhang-Akiyama QM. NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle-dependent degradation of protein. J Radiat Res. 2017;58:487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papageorgiou A, Dinney CP, McConkey DJ. Interferon-alpha induces TRAIL expression and cell death via an IRF-1-dependent mechanism in human bladder cancer cells. Cancer Biol Ther. 2007;6:872–9.

    Article  CAS  PubMed  Google Scholar 

  22. Venkatesh D, Ernandez T, Rosetti F, Batal I, Cullere X, Luscinskas FW, et al. Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-beta autocrine signaling to promote monocyte recruitment. Immunity. 2013;38:1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klune JR, Bartels C, Luo J, Yokota S, Du Q, Geller DA. IL-23 mediates murine liver transplantation ischemia-reperfusion injury via IFN-gamma/IRF-1 pathway. Am J Physiol Gastrointest Liver Physiol. 2018;315:G991–G1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu SJ, Kim HS, Cho SW, Sohn J. IL-4 inhibits proliferation of renal carcinoma cells by increasing the expression of p21WAF1 and IRF-1. Exp Mol Med. 2004;36:372–9.

    Article  CAS  PubMed  Google Scholar 

  25. Galon J, Sudarshan C, Ito S, Finbloom D, O’Shea JJ. IL-12 induces IFN regulating factor-1 (IRF-1) gene expression in human NK and T cells. J Immunol. 1999;162:7256–62.

    Article  CAS  PubMed  Google Scholar 

  26. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S. Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science. 2006;311:1141–6.

    Article  CAS  PubMed  Google Scholar 

  27. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL. Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene. 2002;21:7776–85.

    Article  CAS  PubMed  Google Scholar 

  28. Brzostek-Racine S, Gordon C, Van Scoy S, Reich NC. The DNA damage response induces IFN. J Immunol. 2011;187:5336–45.

    Article  CAS  PubMed  Google Scholar 

  29. Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, et al. DNA damage induces NF-kappaB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012;287:21783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang N, Liu W, Zheng Y, Wang S, Yang B, Li M, et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-kappaB/SOX4 signaling. Cell Death Dis. 2018;9:880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem. 2003;278:36916–23.

    Article  CAS  PubMed  Google Scholar 

  32. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12:115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jonsson KL, et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-kappaB signaling after nuclear DNA damage. Mol Cell. 2018;71:745–60.e745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, et al. NEMO-IKKbeta are essential for IRF3 and NF-kappaB activation in the cGAS-STING pathway. J Immunol. 2017;199:3222–33.

    Article  CAS  PubMed  Google Scholar 

  35. Kurashima K, Sekimoto T, Oda T, Kawabata T, Hanaoka F, Yamashita T. Polη, a Y-family translesion synthesis polymerase, promotes cellular tolerance of Myc-induced replication stress. J Cell Sci. 2018;131:jcs212183.

  36. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yoon H, Boss JM. PU.1 binds to a distal regulatory element that is necessary for B cell-specific expression of CIITA. J Immunol. 2010;184:5018–28.

    Article  CAS  PubMed  Google Scholar 

  38. Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, et al. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. J Immunol. 2012;189:2393–403.

    Article  CAS  PubMed  Google Scholar 

  39. Harada H, Takahashi E, Itoh S, Harada K, Hori TA, Taniguchi T. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol Cell Biol. 1994;14:1500–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin OCB, Frisan T. Bacterial genotoxin-induced DNA damage and modulation of the host immune microenvironment. Toxins. 2020;12:63.

  41. Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976;17:565–77.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980;26:171–6.

    Article  CAS  PubMed  Google Scholar 

  43. Morishita Y, Kataoka T, Towatari M, Ito T, Inoue H, Ogura M, et al. Up-regulation of transferrin receptor gene expression by granulocyte colony-stimulating factor in human myeloid leukemia cells. Cancer Res. 1990;50:7955–61.

    CAS  PubMed  Google Scholar 

  44. Birnie GD. The HL60 cell line: a model system for studying human myeloid cell differentiation. Br J Cancer Suppl. 1988;9:41–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Niiya K, Takeuchi T, Kobayashi M, Miyoshi I, Hayashi T, Sakuragawa N. Dexamethasone and phorbol ester, but not cytokines, increase the production of plasminogen activator inhibitor type-2 in the PL-21 human promyelocytic leukemia cell line. Thromb Haemost. 1991;66:232–8.

    Article  CAS  PubMed  Google Scholar 

  46. Zika E, Ting JP. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes. Curr Opin Immunol. 2005;17:58–64.

    Article  CAS  PubMed  Google Scholar 

  47. Kondo K, Okuma K, Tanaka R, Matsuzaki G, Ansari AA, Tanaka Y. Rapid induction of OX40 ligand on primary T cells activated under DNA-damaging conditions. Hum Immunol. 2008;69:533–42.

    Article  CAS  PubMed  Google Scholar 

  48. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017;8:1751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ohtsukasa S, Okabe S, Yamashita H, Iwai T, Sugihara K. Increased expression of CEA and MHC class I in colorectal cancer cell lines exposed to chemotherapy drugs. J Cancer Res Clin Oncol. 2003;129:719–26.

    Article  CAS  PubMed  Google Scholar 

  50. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15:203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kelly A, Trowsdale J. Introduction: MHC/KIR and governance of specificity. Immunogenetics. 2017;69:481–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Denzin LK, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell. 1995;82:155–65.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Y, Harrison DL, Song Y, Ji J, Huang J, Hui E. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 2018;24:379–90.e376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, et al. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother. 2013;62:383–91.

    Article  CAS  PubMed  Google Scholar 

  55. Pasquier E, Kavallaris M, Andre N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol. 2010;7:455–65.

    Article  PubMed  Google Scholar 

  56. Simsek C, Esin E, Yalcin S. Metronomic chemotherapy: a systematic review of the literature and clinical experience. J Oncol. 2019;2019:5483791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18:313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 2018;39:644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 2007;109:5346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Tomizawa for technical help and H. Miyoshi, T. Otsuki, M. Ri, and H. Tamura for generous gifts of materials. We also thank the Edanz Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Oda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, T., Nakamura, R., Kasamatsu, T. et al. DNA-double strand breaks enhance the expression of major histocompatibility complex class II through the ATM-NF-κΒ-IRF1-CIITA pathway. Cancer Gene Ther 29, 225–240 (2022). https://doi.org/10.1038/s41417-021-00302-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00302-y

This article is cited by

Search

Quick links