Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA binding site polymorphism in inflammatory genes associated with colorectal cancer: literature review and bioinformatics analysis

Abstract

Inflammation, among environmental risk factors, is one of the most important contributors to colorectal cancer (CRC) development. In this way, studies revealed that the incidence of CRC in inflammatory bowel disease patients is up to 60% higher than the general population. MicroRNAs (miRNAs), small noncoding RNA molecules, have attracted excessive attention due to their fundamental role in various aspects of cellular biology, such as inflammation by binding to the 3′-untranslated regions (3′-UTR) of pro and anti-inflammatory genes. Based on multiple previous studies, SNPs at 3′-UTR can affect miRNA recognition elements by changing the thermodynamic features and secondary structure. This effect can be categorized, based on the number of changes, into four groups, including break, decrease, create, and enhance. In this paper, we will focus on functional variants in miRNA binding sites in inflammatory genes, which can modulate the risk of CRC by both investigating previous studies, regarding miRSNPs in inflammatory genes associated with CRC and recruiting in silico prediction algorithms to report putative miRSNPs in 176 inflammatory genes. In our analysis, we achieved 110 miRSNPs in 3′-UTR of 67 genes that seem good targets for future researches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of polymorphism in various gene regions and function of polymorphism in association with diseases especially in cancer susceptibility.

Similar content being viewed by others

References

  1. Gandomani HS, Aghajani M, Mohammadian-Hafshejani A, Tarazoj AA, Pouyesh V, Salehiniya H. Colorectal cancer in the world: incidence, mortality and risk factors. Biomed Res Ther. 2017;4:1656–75.

    Google Scholar 

  2. Colace L, Boccia S, De Maria R, Zeuner A. Colorectal cancer: towards new challenges and concepts of preventive healthcare. Ecancermedicalscience. 2017;11:ed74–98.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simonian M, Khosravi S, Mortazavi D, Bagheri H, Salehi R, Hassanzadeh A, et al. Environmental risk factors associated with sporadic colorectal cancer in Isfahan, Iran. Middle East J Cancer. 2018;9:318–22.

    Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  5. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14. e5

    Article  PubMed  CAS  Google Scholar 

  6. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436.

    Article  CAS  PubMed  Google Scholar 

  7. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang S, Liu Z, Wang L, Zhang X. NF-κB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schottenfeld D, Beebe‐Dimmer J. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin. 2006;56:69–83.

    Article  PubMed  Google Scholar 

  10. Rajput S, Wilber A. Roles of inflammation in cancer initiation, progression, and metastasis. Front Biosci (Sch Ed). 2010;2:176–83.

    Google Scholar 

  11. Sethi G, Shanmugam MK, Ramachandran L, Kumar AP, Tergaonkar V. Multifaceted link between cancer and inflammation. Biosci Rep. 2012;32:1–15.

    Article  CAS  PubMed  Google Scholar 

  12. Kundu JK, Surh Y-J. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 2012;52:2013–37.

    Article  CAS  PubMed  Google Scholar 

  13. Chams S, Badran R, Sayegh SE, Chams N, Shams A, Hajj Hussein I. Inflammatory bowel disease: Looking beyond the tract. Int J Immunopathol Pharmacol. 2019;33:2058738419866567.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hnatyszyn A, Hryhorowicz S, Kaczmarek-Ryś M, Lis E, Słomski R, Scott RJ, et al. Colorectal carcinoma in the course of inflammatory bowel diseases. Hereditary Cancer Clin Pract. 2019;17:18.

    Article  CAS  Google Scholar 

  15. Voronov E, Apte RN. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer. Cancer Microenviron. 2015;8:187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feagins LA, Souza RF, Spechler SJ. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol. 2009;6:297.

    Article  CAS  PubMed  Google Scholar 

  17. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang K, Civan J, Mukherjee S, Patel F, Yang H. Genetic variations in colorectal cancer risk and clinical outcome. World J Gastroenterology. 2014;20:4167.

    Article  CAS  Google Scholar 

  19. Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Tan Y-Q. Advances in identification of susceptibility gene defects of hereditary colorectal cancer. J Cancer. 2019;10:643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58.

    Article  CAS  PubMed  Google Scholar 

  22. Dominic OG, McGarrity T, Dignan M, Lengerich EJ. American College of Gastroenterology guidelines for colorectal cancer screening 2008. Am J Gastroenterol. 2009;104:2626.

    Article  PubMed  Google Scholar 

  23. Wen J, Xu Q, Yuan Y. Single nucleotide polymorphisms and sporadic colorectal cancer susceptibility: a field synopsis and meta-analysis. Cancer Cell Int. 2018;18:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xin J, Du M, Gu D, Ge Y, Li S, Chu H, et al. Combinations of single nucleotide polymorphisms identified in genome‐wide association studies determine risk for colorectal cancer. Int J Cancer. 2019; 145:2661–2669.

  25. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23. 3. Nat Genet. 2008;40:623.

    Article  CAS  PubMed  Google Scholar 

  26. Collins FS, Brooks LD, Chakravarti AA. DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998;8:1229–31.

    Article  CAS  PubMed  Google Scholar 

  27. Jin Y, Wang J, Bachtiar M, Chong SS, Lee CG. Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics. 2018;12:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med. 2012;10:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacFarlane L-A, R Murphy P. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  Google Scholar 

  31. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29:579–84.

    Article  CAS  PubMed  Google Scholar 

  32. Mosallayi M, Simonian M, Khosravi S, Salehi AR, Khodadoostan M, Sebghatollahi V, et al. Polymorphism (rs16917496) at the miR-502 binding site of the lysine methyltransferase 5A (SET8) and Its correlation with colorectal cancer in iranians. Adv Biomed Res. 2017;6:77.

  33. Saunders MA, Liang H, Li W-H. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA. 2007;104:3300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204.

    Article  PubMed  Google Scholar 

  35. Freire MO, Van Dyke TE. Natural resolution of inflammation. Periodontology 2000. 2013;63:149–64.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Muñoz-Carrillo JL, Cordero JFC, Gutiérrez-Coronado O, Villalobos-Gutiérrez PT, Ramos-Gracia LG, Hernández-Reyes VE. Cytokine profiling plays a crucial role in activating immune system to clear infectious pathogens. In: Immune Response Activation: IntechOpen; 2018;25:6287.

  37. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20:6008.

    Article  CAS  PubMed Central  Google Scholar 

  38. Mager LF, Wasmer M-H, Rau TT, Krebs P. Cytokine-induced modulation of colorectal cancer. Front Oncol. 2016;6:96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferreira VL, Borba HHL, Bonetti ADF, Leonart L, Pontarolo R. Cytokines and interferons: types and functions. In: Autoantibodies and Cytokines: IntechOpen; 2018;74:550.

  40. Shrihari T. Dual role of inflammatory mediators in cancer. Ecancermedicalscience. 2017;11:721.

  41. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7:651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer. 2017;16:153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Azijli K, Weyhenmeyer B, Peters G, De Jong S, Kruyt F. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ. 2013;20:858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig. 2007;117:1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meira LB, Bugni JM, Green SL, Lee C-W, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Investig. 2008;118:2516–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.

    Article  CAS  PubMed  Google Scholar 

  47. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z, Li S, Cao Y, Tian X, Zeng R, Liao D-F, et al. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid Med Cell Longev. 2016;2016:1–15.

  49. Jeong H-J, Chung H-S, Lee B-R, Kim S-J, Yoo S-J, Hong S-H, et al. Expression of proinflammatory cytokines via HIF-1α and NF-κB activation on desferrioxamine-stimulated HMC-1 cells. Biochem Biophys Res Commun. 2003;306:805–11.

    Article  CAS  PubMed  Google Scholar 

  50. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front Oncol. 2012;2:191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang CL, Marra G, Chauhan DP, Ha HT, Chang DK, Ricciardiello L, et al. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol-Cell Physiol. 2002;283:C148–C54.

    Article  CAS  PubMed  Google Scholar 

  52. Fleisher AS, Esteller M, Harpaz N, Leytin A, Rashid A, Xu Y, et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 2000;60:4864–8.

    CAS  PubMed  Google Scholar 

  53. Mirzaee V, Molaei M, Shalmani HM, Zali MR. Helicobacter pylori infection and expression of DNA mismatch repair proteins. World J Gastroenterol. 2008;14:6717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 2000;60:3333–7.

    CAS  PubMed  Google Scholar 

  55. Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Xu-Welliver M, Kartalou M, et al. The adaptive imbalance in base excision–repair enzymes generates microsatellite instability in chronic inflammation. J Clin Investig. 2003;112:1887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jedinak A, Dudhgaonkar S, Kelley MR, Sliva D. Apurinic/Apyrimidinic endonuclease 1 regulates inflammatory response in macrophages. Anticancer Res. 2011;31:379–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramana CV, Boldogh I, Izumi T, Mitra S. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci USA. 1998;95:5061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  59. Munkholm P. The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18:1–5.

    Article  PubMed  Google Scholar 

  60. Hamoya T, Fujii G, Miyamoto S, Takahashi M, Totsuka Y, Wakabayashi K, et al. Effects of NSAIDs on the risk factors of colorectal cancer: a mini review. Genes Environ. 2016;38:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hsu H-H, Lin Y-M, Shen C-Y, Shibu M, Li S-Y, Chang S-H, et al. Prostaglandin E2-induced COX-2 expressions via EP2 and EP4 signaling pathways in human LoVo colon cancer cells. Int J Mol Sci. 2017;18:1132.

    Article  PubMed Central  CAS  Google Scholar 

  62. Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1:11.

    Article  CAS  PubMed  Google Scholar 

  63. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Front Immunol. 2018;9:1377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fernández‐Messina L, Gutiérrez‐Vázquez C, Rivas‐García E, Sánchez‐Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell. 2015;107:61–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Qu Z, Li W, Fu B. MicroRNAs in autoimmune diseases. BioMed Res Int. 2014;2014:1–11.

  66. Sonkoly E, Ståhle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol. 2008;18:131–40.

    Article  CAS  PubMed  Google Scholar 

  67. Tomankova T, Petrek M, Gallo J, Kriegova E. MicroRNAs: emerging regulators of immune‐mediated diseases. Scand J Immunol. 2012;75:129–41.

    Article  CAS  PubMed  Google Scholar 

  68. Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine. 2009;45:58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA‐146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pfeiffer D, Roßmanith E, Lang I, Falkenhagen D. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an In vitro sepsis model. PLoS ONE. 2017;12:e0179850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999;22:231.

    Article  CAS  PubMed  Google Scholar 

  72. Sukhumsirichart W. Polymorphisms. In Genetic Diversity and disease susceptibility. IntechOpen. 2018;76:728.

    Google Scholar 

  73. Altshuler D, Donnelly P, Consortium IH. A haplotype map of the human genome. Nature. 2005;437:1299.

    Article  CAS  Google Scholar 

  74. Guo L, Du Y, Chang S, Zhang K, Wang J. rSNPBase: a database for curated regulatory SNPs. Nucleic Acids Res. 2013;42(D1):D1033–D9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip Rev: RNA. 2018;9:e1474.

    PubMed  Google Scholar 

  76. Schwerk J, Savan R. Translating the untranslated region. J Immunol. 2015;195:2963–71.

    Article  CAS  PubMed  Google Scholar 

  77. Skeeles LE, Fleming JL, Mahler KL, Toland AE. The impact of 3′ UTR variants on differential expression of candidate cancer susceptibility genes. PLoS ONE. 2013;8:e58609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ding H-X, Lv Z, Yuan Y, Xu Q. MiRNA polymorphisms and cancer prognosis: a systematic review and meta-analysis. Front Oncol. 2018;8:596.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, et al. IL23R (interleukin 23 receptor) variants protective against inflammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafficking. J Biol Chem. 2016;291:8673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014;2014:752-12.

    Google Scholar 

  84. Zwiers A, Kraal L, van de Pouw Kraan TC, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188:1573–7.

    Article  CAS  PubMed  Google Scholar 

  85. Zheng J, Jiang L, Zhang L, Yang L, Deng J, You Y, et al. Functional genetic variations in the IL-23 receptor gene are associated with risk of breast, lung and nasopharyngeal cancer in Chinese populations. Carcinogenesis. 2012;33:2409–16.

    Article  CAS  PubMed  Google Scholar 

  86. Chen J, Lu Y, Zhang H, Ding Y, Ren C, Hua Z, et al. A nonsynonymous polymorphism in IL23R gene is associated with risk of gastric cancer in a Chinese population. Mol Carcinogenesis. 2010;49:862–8.

    Article  CAS  Google Scholar 

  87. Mosallaei M, Simonian M, Esmaeilzadeh E, Bagheri H, Miraghajani M, Salehi AR, et al. Single nucleotide polymorphism rs10889677 in miRNAs Let-7e and Let-7f binding site of IL23R gene is a strong colorectal cancer determinant: report and meta-analysis. Cancer Genet. 2019;239:46–53.

    Article  PubMed  Google Scholar 

  88. Zhou S, Ruan Y, Yu H, Chen Y, Yao Y, Ma Y, et al. Functional IL-23R rs10889677 genetic polymorphism and risk of multiple solid tumors: a meta-analysis. PLoS ONE. 2013;8:e80627.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Omrane I, Baroudi O, Bougatef K, Mezlini A, Abidi A, Medimegh I, et al. Significant association between IL23R and IL17F polymorphisms and clinical features of colorectal cancer. Immunol Lett. 2014;158:189–94.

    Article  CAS  PubMed  Google Scholar 

  90. Okazaki T, Wang M-H, Rawsthorne P, Sargent M, Datta LW, Shugart YY, et al. Contributions of IBD5, IL23R, ATG16L1, and NOD2 to Crohn’s disease risk in a population-based case-control study: evidence of gene–gene interactions. Inflamm Bowel Dis. 2008;14:1528–41.

    Article  PubMed  Google Scholar 

  91. Karimkhani S, Chaleshi V, Balaii H, Tarban P, Nourian M, Irani S, et al. Lack of association between interleukin 23R (IL-23R) rs10889677 polymorphism and inflammatory bowel disease susceptibility in an Iranian population. Rep Biochem Mol Biol. 2018;7:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mattner F, Fischer S, Guckes S, Jin S, Kaulen H, Schmitt E, et al. The interleukin‐12 subunit p40 specifically inhibits effects of the interleukin‐12 heterodimer. Eur J Immunol. 1993;23:2202–8.

    Article  CAS  PubMed  Google Scholar 

  93. Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997;112:1169–78.

    Article  CAS  PubMed  Google Scholar 

  94. Seegers D, Zwiers A, Strober W, Pena A, Bouma G. A TaqI polymorphism in the 3′ UTR of the IL-12 p40 gene correlates with increased IL-12 secretion. Genes Immun. 2002;3:419.

    Article  CAS  PubMed  Google Scholar 

  95. Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Research. 2015;4:F1000.

  96. Brunda MJ, Luistro L, Rumennik L, Wright RB, Dvorozniak M, Aglione A, et al. Antitumor activity of interleukin 12 in preclinical models. Cancer Chemother Pharmacol. 1996;38:S16–S21.

    Article  CAS  PubMed  Google Scholar 

  97. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    Article  PubMed Central  Google Scholar 

  98. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2019:48:D148–D154.

  99. Sun R, Jia F, Liang Y, Li L, Bai P, Yuan F, et al. Interaction analysis of IL-12A and IL-12B polymorphisms with the risk of colorectal cancer. Tumor Biol. 2015;36:9295–301.

    Article  CAS  Google Scholar 

  100. Zhou L, Yao F, Luan H, Wang Y, Dong X, Zhou W, et al. Functional polymorphisms in the interleukin-12 gene contribute to cancer risk: Evidence from a meta-analysis of 18 case–control studies. Gene. 2012;510:71–7.

    Article  CAS  PubMed  Google Scholar 

  101. Chen H, Cheng S, Wang J, Cao C, Bunjhoo H, Xiong W, et al. Interleukin-12B rs3212227 polymorphism and cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:10235–42.

    Article  CAS  PubMed  Google Scholar 

  102. Mathy N, Scheuer W, Lanzendörfer M, Honold K, Ambrosius D, Norley S, et al. Interleukin‐16 stimulates the expression and production of pro‐inflammatory cytokines by human monocytes. Immunology. 2000;100:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Silva EM, Mariano VS, Pastrez PRA, Pinto MC, Castro AG, Syrjanen KJ, et al. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS ONE. 2017;12:e0181125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kovacs E. The serum levels of IL-12 and IL-16 in cancer patients. Relation to the tumour stage and previous therapy. Biomedicine Pharmacother. 2001;55:111–6.

    Article  CAS  Google Scholar 

  105. Yellapa A, Bitterman P, Sharma S, Guirguis AS, Bahr JM, Basu S, et al. Interleukin 16 expression changes in association with ovarian malignant transformation. Am J Obstet Gynecol. 2014;210:272. e1-. e10

    Article  PubMed  CAS  Google Scholar 

  106. Yellapa A, Bahr JM, Bitterman P, Abramowicz JS, Edassery SL, Penumatsa K, et al. Association of interleukin 16 with the development of ovarian tumor and tumor-associated neoangiogenesis in laying hen model of spontaneous ovarian cancer. Int J Gynecologic Cancer. 2012;22:199–207.

    Article  Google Scholar 

  107. Azimzadeh P, Romani S, Mohebbi SR, Mahmoudi T, Vahedi M, Fatemi SR, et al. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population. Cancer Genet. 2012;205:501–7.

    Article  CAS  PubMed  Google Scholar 

  108. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008;29:1306–11.

    Article  CAS  PubMed  Google Scholar 

  109. Stanifer ML, Pervolaraki K, Boulant S. Differential regulation of type I and type III interferon signaling. Int J Mol Sci. 2019;20:1445.

    Article  CAS  PubMed Central  Google Scholar 

  110. Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS, Nayak-Kapoor A, et al. Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother Cancer. 2019;7:157.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405.

    Article  CAS  PubMed  Google Scholar 

  112. Muñoz-Fontela C, Macip S, Martínez-Sobrido L, Brown L, Ashour J, García-Sastre A, et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med. 2008;205:1929–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chang L-C, Fan C-W, Tseng W-K, Chein H-P, Hsieh T-Y, Chen J-R, et al. IFNAR1 is a predictor for overall survival in colorectal cancer and its mRNA expression correlated with IRF7 but not TLR9. Medicine. 2014;93:349.

  114. Araya RE, Goldszmid RS. IFNAR1 degradation: a new mechanism for tumor immune evasion? Cancer Cell. 2017;31:161–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lu S, Pardini B, Cheng B, Naccarati A, Huhn S, Vymetalkova V, et al. Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival. PLoS ONE. 2014;9:e111061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:1920–87.

  117. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.

    Article  CAS  PubMed  Google Scholar 

  119. Roelofs HM, Te Morsche RH, van Heumen BW, Nagengast FM, Peters WH. Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol. 2014;14:9005.

    Article  CAS  Google Scholar 

  120. Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999;18:7908.

    Article  CAS  PubMed  Google Scholar 

  121. Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, SYRJÄNEN K, El-Faitori O, et al. High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. Anticancer Res. 2013;33:3137–43.

    PubMed  Google Scholar 

  122. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA. 1997;94:3336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y, et al. Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut. 2015;64:1419–25.

    Article  CAS  PubMed  Google Scholar 

  124. Andersen V, Holst R, Kopp TI, Tjønneland A, Vogel U. Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study. PLoS ONE. 2013;8:e78366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ali I, Luke B, Dean M, Greenwald P. Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma. Br J Cancer. 2005;93:953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gong Z, Bostick RM, Xie D, Hurley TG, Deng Z, Dixon DA, et al. Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma. Int J Colorectal Dis. 2009;24:647–54.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cox D, Pontes C, Guinó E, Navarro M, Osorio A, Canzian F, et al. Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br J Cancer. 2004;91:339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Iglesias D, Nejda N, Azcoita MM, Schwartz S, González-Aguilera JJ, Fernández-Peralta AM. Effect of COX2-765G> C and c. 3618A> G polymorphisms on the risk and survival of sporadic colorectal cancer. Cancer Causes Control. 2009;20:1421–9.

    Article  PubMed  Google Scholar 

  129. Mosallaei M, Simonian M, Ahangari F, Miraghajani M, Mortazavi D, Salehi AR, et al. Single nucleotide polymorphism rs4648298 in miRNAs hsa-miR21 and hsa-miR590 binding site of COX gene is a strong colorectal cancer determinant. J Gastrointest Oncol. 2018;9:448.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kobayashi M, Nakata M, Shioi G, Miyachi H, Honjo T, Nagaoka H. In vivo analysis of Aicda gene regulation: a critical balance between upstream enhancers and intronic silencers governs appropriate expression. PLoS ONE. 2013;8:e61433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. He G, Karin M. NF-κB and STAT3–key players in liver inflammation and cancer. Cell Res. 2011;21:159.

    Article  CAS  PubMed  Google Scholar 

  133. Arlıer S, Kayışlı ÜA, Arıcı A. Tumor necrosis factor alfa and interleukin 1 alfa induced phosphorylation and degradation of inhibitory kappa B alpha are regulated by estradiol in endometrial cells. Turkish J Obstet Gynecol. 2018;15:50.

    Article  Google Scholar 

  134. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Simonian M, Mosallayi M, Miraghajani M, Feizi A, Khosravi S, Salehi AR, et al. Single nucleotide polymorphism rs696 in miR449a binding site of NFKBIA gene is correlated with risk of colorectal cancer. Gastroenterol Hepatol Bed Bench. 2018;11:48.

    PubMed  PubMed Central  Google Scholar 

  136. Zhang G-L, Zou Y-F, Feng X-L, Shi H-J, Du X-F, Shao M-H, et al. Association of the NFKBIA gene polymorphisms with susceptibility to autoimmune and inflammatory diseases: a meta-analysis. Inflamm Res. 2011;60:11–8.

    Article  CAS  PubMed  Google Scholar 

  137. Song S, Chen D, Lu J, Liao J, Luo Y, Yang Z, et al. NFκB1 and NFκBIA polymorphisms are associated with increased risk for sporadic colorectal cancer in a southern Chinese population. PLoS ONE. 2011;6:e21726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gao J, Pfeifer D, He L-J, Qiao F, Zhang Z, Arbman G, et al. Association of NFKBIA polymorphism with colorectal cancer risk and prognosis in Swedish and Chinese populations. Scand J Gastroenterol. 2007;42:345–50.

    Article  CAS  PubMed  Google Scholar 

  139. Klein W, Tromm A, Folwaczny C, Hagedorn M, Duerig N, Epplen JT, et al. A polymorphism of the NFKBIA gene is associated with Crohn’s disease patients lacking a predisposing allele of the CARD15 gene. Int J Colorectal Dis. 2004;19:153–6.

    Article  PubMed  Google Scholar 

  140. Szamosi T, Lakatos PL, Szilvasi A, Lakatos L, Kovacs A, Molnar T, et al. The 3′ UTR NFKBIA variant is associated with extensive colitis in Hungarian IBD patients. Digestive Dis Sci. 2009;54:351–9.

    Article  CAS  Google Scholar 

  141. Allen IC. Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol. 2014;5:169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Saxena M, Yeretssian G. NOD-like receptors: master regulators of inflammation and cancer. Front Immunol. 2014;5:327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: a critical regulator of ileal microbiota and Crohn’s disease. Front Immunol. 2016;7:367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology. 2003;124:521–36.

    Article  CAS  PubMed  Google Scholar 

  145. Negroni A, Pierdomenico M, Cucchiara S, Stronati L. NOD2 and inflammation: current insights. J Inflamm Res. 2018;11:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE. NOD1 and NOD2 in inflammation, immunity and disease. Arch Biochem Biophys. 2019;670:69–81.

    Article  CAS  PubMed  Google Scholar 

  147. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2018;47(D1):D155–D62.

    Article  PubMed Central  CAS  Google Scholar 

  148. Ahangari F, Salehi R, Salehi M, Khanahmad H. A miRNA-binding site single nucleotide polymorphism in the 3′-UTR region of the NOD2 gene is associated with colorectal cancer. Med Oncol. 2014;31:173.

    Article  PubMed  CAS  Google Scholar 

  149. Ognjanovic S, Yamamoto J, Saltzman B, Franke A, Ognjanovic M, Yokochi L, et al. Serum CRP and IL-6, genetic variants and risk of colorectal adenoma in a multiethnic population. Cancer Causes Control. 2010;21:1131–8.

    Article  PubMed  Google Scholar 

  150. Slattery ML, Curtin K, Poole EM, Duggan DJ, Samowitz WS, Peters U, et al. Genetic variation in C‐reactive protein in relation to colon and rectal cancer risk and survival. Int J Cancer. 2011;128:2726–34.

    Article  CAS  PubMed  Google Scholar 

  151. Omrane I, Medimegh I, Baroudi O, Ayari H, Bedhiafi W, Stambouli N, et al. Involvement of IL17A, IL17F and IL23R polymorphisms in colorectal cancer therapy. PLoS ONE. 2015;10:e0128911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Poole EM, Curtin K, Hsu L, Duggan DJ, Makar KW, Xiao L, et al. Genetic variability in IL23R and risk of colorectal adenoma and colorectal cancer. Cancer Epidemiol. 2012;36:e104–e10.

    Article  CAS  PubMed  Google Scholar 

  153. Gong J, Shen N, Zhang H-M, Zhong R, Chen W, Miao X, et al. A genetic variant in microRNA target site of TGF-β signaling pathway increases the risk of colorectal cancer in a Chinese population. Tumor Biol. 2014;35:4301–6.

    Article  CAS  Google Scholar 

  154. Dimberg J, Skarstedt M, Löfgren S, Zar N, Matussek A. Protein expression and gene polymorphism of CXCL10 in patients with colorectal cancer. Biomed Rep. 2014;2:340–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shi M-D, Chen J-H, Sung H-T, Lee J-S, Tsai L-Y, Lin H-H. CXCL12-G801A polymorphism modulates risk of colorectal cancer in Taiwan. Arch Med Sci. 2013;9:999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dimberg J, Hugander A, Löfgren S, Wågsäter D. Polymorphism and circulating levels of the chemokine CXCL12 in colorectal cancer patients. Int J Mol Med. 2007;19:11–5.

    CAS  PubMed  Google Scholar 

  157. Zanetti KA, Haznadar M, Welsh JA, Robles AI, Ryan BM, McClary AC, et al. 3′-UTR and functional secretor haplotypes in mannose-binding lectin 2 are associated with increased colon cancer risk in African Americans. Cancer Res. 2012;72:1467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Pourdavoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Table 1: List of genes that were involved in Inflammation-Associated CRC.

41417_2020_172_MOESM2_ESM.docx

Table 2: Candidate miRNA binding site polymorphism in inflammatory genes (lower two tertiles; 73 miRSNPs with |ΔΔG|tot<30.2 kcal/mol).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh, M.R., Zarin, M., Ehtesham, N. et al. MicroRNA binding site polymorphism in inflammatory genes associated with colorectal cancer: literature review and bioinformatics analysis. Cancer Gene Ther 27, 739–753 (2020). https://doi.org/10.1038/s41417-020-0172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0172-0

This article is cited by

Search

Quick links