Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges in assessing solid tumor responses to immunotherapy

Abstract

With the advent of immunotherapy as an integral component of multidisciplinary solid tumor treatment, we are confronted by an unfamiliar and novel pattern of radiographic responses to treatment. Enlargement of tumors or even new lesions may not represent progression, but rather reflect what will ultimately evolve into a clinically beneficial response. In addition, the kinetics of radiographic changes in response to immunotherapy treatments may be distinct from what has been observed with cytotoxic chemotherapy and radiation. The phenomenon of pseudoprogression has been documented in patients receiving immunotherapeutic agents, such as checkpoint inhibitors and cellular therapies. Currently, there are no clinical response guidelines that adequately account for pseudoprogression and solid tumor responses to immunotherapy in general. Even so, response criteria have evolved to account for the radiographic manifestations of novel therapies. The evolution of World Health Organization (WHO) criteria and Response Evaluation Criteria in Solid Tumors (RECIST), along with the emergence of immune-related response criteria (irRC) and the immune Response Evaluation Criteria in Solid Tumors (iRECIST) reflect the need for new frameworks. This review evaluates the relationship between pseudoprogression, clinical outcomes, and our current understanding of the biology of pseudoprogression. To achieve our goal, we discuss unusual response patterns in patients receiving immunotherapy. We seek to develop a deeper understanding of radiographic responses to immunotherapy such that clinical benefit is not underappreciated in individual patients and during clinical investigation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: iRECIST response criteria accounts for the possibility of pseudoprogression after treatment with immunotherapeutic agents by requiring confirmation of progressive disease seen on initial response imaging.

References

  1. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.

    CAS  PubMed  Article  Google Scholar 

  2. CRI: Timeline of Progress, Treatment Approved. 2019. New York, NY: Cancer Research Institute. https://www.cancerresearch.org/immunotherapy/timeline-of-progress#. Accessed 23 July 2019.

  3. Borcoman E, Nandikolla A, Long G, Goel S, Le Tourneau C. Patterns of response and progression in immunotherapy. ASCO Educ Book. 2018:169–78.

  4. Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015;33:3541–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Beer L, Hochmair M, Prosch H. Pitfalls in the radiological response assessment of immunotherapy. Memo. 2018;11:138–43.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Wang GX, Kurra V, Gainor JF, Sullivan RJ, Flaherty KT, Lee SI, et al. Immune checkpoint inhibitor cancer therapy: spectrum of imaging findings. Radiographics. 2017;37:2132–44.

    PubMed  Article  Google Scholar 

  7. Wang Q, Gao J, Wu X. Pseudoprogression and hyperprogression after checkpoint blockade. Int Immunopharmacol. 2018;58:125–35.

    CAS  PubMed  Article  Google Scholar 

  8. Liu G, Chen T, Li R, Zhu L, Liu D, Ding Z. Well-controlled pleural effusion indicated pseudoprogression after immunotherapy in lung cancer: a case report. Thoracic Cancer. 2018;9:1190–3.

    PubMed  PubMed Central  Article  Google Scholar 

  9. World Health Organization. WHO handbook for reporting results of cancer treatment. WHO Offset Publication: 1979. p. 1–46.

  10. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.

    CAS  PubMed  Article  Google Scholar 

  11. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States. National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    CAS  PubMed  Article  Google Scholar 

  12. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    CAS  PubMed  Article  Google Scholar 

  13. Schwartz LH, Litiere S, de Vries E, Ford R, Gwyther S, Mandrekar S, et al. RECIST 1.1 – update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132–7.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    CAS  PubMed  Article  Google Scholar 

  15. Takada J, Hidaka H, Nakazawa T, Kondo M, Numata K, Tanaka K, et al. Modified Response Evaluation Criteria in Solid Tumors is superior to Response Evaluation Criteria in Solid Tumors for assessment of responses to sorafenib in patients with advanced hepatocellular carcinoma. BMC Res Notes. 2015;8:609–18.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.

    CAS  PubMed  Article  Google Scholar 

  17. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:143–52.

    Article  Google Scholar 

  18. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:1803–13.

    Article  Google Scholar 

  19. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10:1185–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99:12293–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–22.

    CAS  PubMed  Article  Google Scholar 

  24. Crocenzi TS, El-Khoueiry AB, Yau TC, Melero I, Sangro B, Kudo M, et al. Nivolumab (nivo) in sorafenib (sor)-naïve and -experienced patients with advanced hepatocellular carcinoma (HCC): CheckMate 040 study (abstr 4013). J Clin Oncol. 2017;35:4013.

    Article  Google Scholar 

  25. El-Khouiery AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2493–502.

    Google Scholar 

  26. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machada M, et al. KEYNOTE-059 cohort 1: efficacy and safety of pembrolizumab (pembro) monotherapy in patients with previously treated advanced gastric cancer (abstr 4003). J Clin Oncol. 2017;35:4003.

    Article  Google Scholar 

  28. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors. Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Roger Williams Medical Center. CAR-T hepatic artery infusions or pancreatic venous infusions for CEA-expressing liver metastases or pancreas cancer (HITM-SURE). https://clinicaltrials.gov/ct2/show/NCT02850536. NLM identifier: NCT02850536. Accessed 23 July 2019.

  32. Sorrento Therapeutics. CAR-T intraperitoneal infusions for CEA-expressing adenocarcinoma peritoneal metastases or malignant ascites (IPC). https://clinicaltrials.gov/ct2/show/NCT03682744. NLM identifier: NCT03682744. Accessed 23 July 2019.

  33. Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor modified T cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21:3149–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nature Immunology. 2008;9:503–10.

    CAS  PubMed  Article  Google Scholar 

  35. Kalinski P, Mailliard RB, Giermasz A, Zeh HJ, Basse P, Bartlett DL, et al. Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin Biol Ther. 2005;5:1303–15.

    CAS  PubMed  Article  Google Scholar 

  36. Natural killer cells for cancer immunotherapy: a new CAR is catching up. EBioMedicine. 2019;39:1–2.

  37. Jewett A, Man Y, Tseng H. Dual functions of natural killer cells in selection and differentiation of stem cells; role in regulation of inflammation and regeneration of tissues. J Cancer. 2013;4:12–24.

    CAS  PubMed  Article  Google Scholar 

  38. Viant C, Fenis A, Chicanne G, Payrastre B, Ugolini S, Vivier E. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour function of natural killer cells. Nat Commun. 2014;5:5108–18.

    CAS  PubMed  Article  Google Scholar 

  39. Pauza CD, Liou M, Lahusen T, Xiao L, Lapidus RG, Cairo C, et al. Gamma delta T cell therapy for cancer: it is good to be local. Front Immunol. 2018;9:1–11.

    Article  CAS  Google Scholar 

  40. Zumwalde NA, Sharma A, Xu X, Ma S, Schneider CL, Romero-Masters JC, et al. Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical lymphomagenesis model. JCI Insight. 2017;2:e93179.

    PubMed Central  Article  Google Scholar 

  41. Santolaria T, Robard M, Léger A, Catros V, Bonneville M, Scotet E. Repeated systemic administrations of both aminobisphosphonates and human Vγ9Vδ2 T cells efficiently control tumor development in vivo. J Immunol. 2013;191:1993–2000.

    CAS  PubMed  Article  Google Scholar 

  42. Lozupone F, Pende D, Burgio VL, Castelli C, Spada M, Venditti M, et al. Effect of human natural killer and gammadelta T cells on the growth of human autologous melanoma xenografts in SCID mice. Cancer Res. 2004;64:378–85.

    CAS  PubMed  Article  Google Scholar 

  43. Beck BH, Kim HG, Kim H, Samuel S, Liu Z, Shrestha R, et al. Adoptively transferred ex vivo expanded gammadelta-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer. Breast Cancer Res Treat. 2010;122:135–44.

    CAS  PubMed  Article  Google Scholar 

  44. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res. 1995;55:3551–7.

    CAS  PubMed  Google Scholar 

  45. Parente-Pereira AC, Shmeeda H, Whilding LM, Zambirinis CP, Foster J, van der Stegen SJ, et al. Adoptive immunotherapy of epithelial ovarian cancer with Vγ9Vδ2 T cells, potentiated by liposomal alendronic acid. J Immunol. 2014;193:5557–66.

    CAS  PubMed  Article  Google Scholar 

  46. Duault C, Betous D, Bezombes C, Roga S, Cayrol C, Girard JP, et al. IL-33-expanded human Vγ9Vδ2 T cells have anti-lymphoma effect in a mouse tumor model. Eur J Immunol. 2017;47:2137–41.

    CAS  PubMed  Article  Google Scholar 

  47. Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med. 2004;199:879–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J. γδ T cells for cancer immunotherapy. Oncoimmunology. 2014;3:e27572.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K, et al. Clinical evaluation of autologous gamma delta T cell-based immunotherapy for solid tumours. Br J Cancer. 2011;105:778–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Kunzmann V, Smetak M, Kimmel B, Weigang-Koehler K, Goebeler M, Birkmann J, et al. Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: results from a prospective phase I/II trial. J Immunother. 2012;35:205–13.

    CAS  PubMed  Article  Google Scholar 

  51. Garassino MC, Martelli O, Broggini M, Farina G, Veronese S, Rulli E, et al. Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): a randomised controlled trial. Lancet Oncol. 2013;14:981–8.

    CAS  PubMed  Article  Google Scholar 

  52. Heigener DF, Wu YL, van Zandwijk N, Mali P, Horwood K, Reck M. Second-line erlotinib in patients with advanced non-small-cell lung cancer: subgroup analyses from the TRUST study. Lung Cancer. 2011;74:274–9.

    PubMed  Article  Google Scholar 

  53. Sakamoto M, Nakajima J, Murakawa T, Fukami T, Yoshida Y, Murayama T, et al. Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expnded γδ T cells: a phase I clinical study. J Immunother. 2011;34:202–11.

    CAS  PubMed  Article  Google Scholar 

  54. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg. 2010;37:1191–7.

    PubMed  Article  Google Scholar 

  55. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother. 2007;56:469–76.

    CAS  PubMed  Article  Google Scholar 

  56. Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K. Phase I/II study of adotive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother. 2011;60:1075–84.

    CAS  PubMed  Article  Google Scholar 

  57. Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G, et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol Immunother. 2011;60:1447–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galéa C, et al. Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in γ9δ2 T cells T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2008;51:1599–609.

    Article  CAS  Google Scholar 

  59. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer. 2010;116:4256–65.

    CAS  PubMed  Article  Google Scholar 

  60. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 2007;67:7450–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Graham J, Baker M, Macbeth F, Titshall V. Diagnosis and treatment of prostate cancer: summary of NICE guidance. BMJ. 2008;336:610–2.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, et al. In vivo manipulation of γ9δ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol. 2010;161:290–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, et al. Clinical and immunological evaluation of zoledronate-activated γ9δ2 T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol. 2009;37:956–68.

    CAS  PubMed  Article  Google Scholar 

  64. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, et al. T cells for immune therapy of patients with lymphoid malignancies. Blood. 2003;102:200–6.

    CAS  PubMed  Article  Google Scholar 

  65. Hunter S, Wilcox CR, Davey MS, Kasatskaya SA, Jeffery HC, Chudakov DM, et al. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J Hepatol. 2018;69:654–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Hammerich L, Tacke F. Role of gamma-delta T cells in liver inflammation and fibrosis. World J Gastrointest Pathophysiol. 2014;5:107–13.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Katz SC, Pillarisetty VG, Bleier JI, Kingham TP, Chaudhry UI, Shah AB, et al. Conventional liver CD4 T Cells are functionally distinct and suppressed by environmental factors. Hepatology. 2005;42:293–300.

    PubMed  Article  Google Scholar 

  68. Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med. 2018;16:3–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol. 2015;12:656–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Karantalis V, Schulman IH, Balkan W, Hare JM. Allogeneic cell therapy: a new paradigm in therapy. Circ Res. 2015;116:12–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Handgretinger R, Schilbach K. The potential role of γδ T cells after allogeneic HCT for leukemia. Blood. 2018;131:1063–72.

    CAS  PubMed  Article  Google Scholar 

  72. Saied A, Pillarisetty VG, Katz SC. Immunotherapy for solid tumors – a review for surgeons. J Surg Res. 2014;187:525–35.

    CAS  PubMed  Article  Google Scholar 

  73. Boyiadzis M, Foon K. Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther. 2008;8:1151–8.

    CAS  PubMed  Article  Google Scholar 

  74. Wolchok JD, Ibrahim R, DePril V, Maio M, Queirolo P, Harmankaya K, et al. Anti-tumor response and new lesions in advanced melanoma patients on ipilimumab treatment [abstract 3020]. J Clin Oncol. 2008;26:3020.

  75. Hamid O, Chin K, Li J, Neyns B, Linette G, Negrier S, et al. Dose effect of ipilimumab in patients with advanced melanoma: results from a phase II, randomized dose-ranging study [abstract 9025]. J Clin Oncol. 2008;26:9025.

  76. O’Day SJ, Ibrahim R, DePril V, Maio M, Chiarion-Sileni V, Gajewski TF, et al. Efficacy and safety of ipilimumab induction and maintenance dosing in patients with advanced melanoma who progressed on one or more prior therapies. [abstract 9021]. J Clin Oncol. 2008;26:9021.

  77. Parseghian CM, Patnana M, Bhosale P, Hess KR, Shih YT, Kim B, et al. Evaluating for pseudoprogression in colorectal and pancreatic tumors treated with immunotherapy. J Immunother. 2018;41:284–91.

    PubMed  PubMed Central  Article  Google Scholar 

  78. Katz SC, Hardaway J, Prince E, Guha P, Cunetta M, Moody A, et al. HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA+ liver metastases. Cancer Gene Ther. 2019. https://doi.org/10.1038/s41417-019-0104-z.

  79. Sweis RF, Zha Y, Pass L, Heiss B, Chongsuwat T, Luke JJ, et al. Pseudoprogression manifesting as recurrent ascites with anti-PD-1 immunotherapy in urothelial bladder cancer. J Immunother Cancer. 2018;6:1–6.

    Article  Google Scholar 

  80. Di Giacomo AM, Danielli R, Guidoboni M, Calabrò L, Carlucci D, Miracco C, et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother. 2009;58:1297–306.

    Article  CAS  PubMed  Google Scholar 

  81. Makrilia N, Lappa T, Xyla V, Nikolaidis I, Syrigos K. The role of angiogenesis in solid tumours. An overview. Eur J Int Med. 2009;20:663–71.

    CAS  Article  Google Scholar 

  82. Duffy JP, Guido E, Reber HA, Hines OJ. Influence of hypoxia and neoangiogenesis of the growth of pancreatic cancer. Mol Cancer. 2003;2:12.

    PubMed  PubMed Central  Article  Google Scholar 

  83. Hardaway JC, Prince E, Arepally A, Katz SC. Regional infusion of chimeric antigen receptor T cells to overcome barriers for solid tumor immunotherapy. J Vasc Interv Radiol. 2018;29:1017–21.

    PubMed  Article  Google Scholar 

  84. Duchnowska R. Pseudoprogression during immunotherapy of cancers. Oncol Clin Pract. 2017;13:57–60.

    CAS  Article  Google Scholar 

  85. Curran SD, Muellner AU, Schwartz LH. Imaging response assessment in oncology. Cancer Imaging. 2006;6:S126–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Katz.

Ethics declarations

Conflict of interest

SCK serves as a member of the scientific advisory boards for TriSalus™ Life Sciences and Takeda Pharmaceuticals. The remainder of the authors have no pertinent conflicts of interests to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, L.F., Prince, E., Pillarisetty, V.G. et al. Challenges in assessing solid tumor responses to immunotherapy. Cancer Gene Ther 27, 528–538 (2020). https://doi.org/10.1038/s41417-019-0155-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0155-1

Further reading

Search

Quick links