Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-200 family expression analysis in metastatic clear cell renal cell carcinoma patients

Abstract

The aim of this study is to analyse the of expression levels of microRNA-200 family members in patients with metastatic clear cell renal cell carcinoma (ccRCC). Analysis of microRNA expression was performed on 23 paired DNA samples extracted from kidney tumour tissue and the surrounding normal renal parenchyma. MicroRna-200c was found to have significantly lower expression (in kidney tumour tissue compared to normal renal parenchyma. No other microRna-200 family members showed statistically significant differences in expression levels between tumour and normal kidney tissue. Recent data suggest that the role of microRNA-200c in tumour pathogenesis is rather contradictory, and the underlying mechanisms by which microRNA-200c affects the carcinogenic potential of malignant cells remains unclear and requires further investigation at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Novick A. Kidney cancer: Past, present, and future. Urol. Oncol. 2007;25:188–95.

    Article  Google Scholar 

  2. Chow W, Dong L, Devesa S. Epidemiology and risk factors for kidney cancer. Nat Rev Urol.2010;7:245–57.

    Article  Google Scholar 

  3. Krahmal NV, Zavyalova M, Denisov EV, Vtorushin SV, Perelmuter VM. Tumor epithelial cells invasion: mechanisms and manifestations. Acta Nat. 2015;7:18–31. (in Russian)

    Google Scholar 

  4. Tam W, Weinberg R. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013;19:1438–49.

    Article  CAS  Google Scholar 

  5. Chan S, Wang L. Regulation of cancer metastasis by microRNAs. J Biomed Sci. 2015;22:9.

  6. Li L, Li W. Epithelial–mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 2015;150:33–46.

    Article  CAS  Google Scholar 

  7. Wang X, Chen X, Wang R, Xiao P, Xu Z, Chen L, et al. microRNA-200c modulates the epithelial-to-mesenchymal transition in human renal cell carcinoma metastasis. Oncol Rep. 2013;30:643–50.

    Article  Google Scholar 

  8. Gregory P, Bert A, Paterson E, Barry S, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  Google Scholar 

  9. Bracken C, Gregory P, Khew-Goodall Y, Goodall G. The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci. 2009;66:1682–99.

    Article  CAS  Google Scholar 

  10. Zhang J, Ma L. MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31:653–62.

    Article  CAS  Google Scholar 

  11. Wang Z, Zhao Y, Smith E, Goodall G, Drew P, Brabletz T, et al. Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicological Sci 2011;121:110–22.

    Article  CAS  Google Scholar 

  12. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol. 2011;32:633–51.

    Article  Google Scholar 

  13. Uhlmann S, Zhang J, Schwäger A, Mannsperger H, Riazalhosseini Y, Burmester S, et al. miR-200bc/429 cluster targets PLCγ1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene. 2010;29:4297–306.

    Article  CAS  Google Scholar 

  14. Gibbons D, Lin W, Creighton C, Rizvi Z, Gregory P, Goodall G, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes &. Development 2009;23:2140–51.

    CAS  Google Scholar 

  15. Lee H, Jun S, Lee Y, Lee H, Lee W, Park C. Expression of miRNAs and ZEB1 and ZEB2 correlates with histopathological grade in papillary urothelial tumors of the urinary bladder. Virchows Arch 2013;464:213–20.

    Article  Google Scholar 

  16. Park S, Gaur A, Lengyel E, Peter M. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  Google Scholar 

  17. Wiklund E, Bramsen J, Hulf T, Dyrskjøt L, Ramanathan R, Hansen T, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011;128:1327–34.

    Article  CAS  Google Scholar 

  18. Koo T, Cho B, Kim D, Park J, Choi E, Kim H, et al. MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Oncotarget. 2017;8:65457–68.

  19. Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer. 2014;136:1003–12.

    Article  Google Scholar 

  20. Lin J, Liu C, Gao F, Mitchel R, Zhao L, Yang Y, et al. miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem. 2013;114:606–15.

    Article  CAS  Google Scholar 

  21. Liu W, Huang Y, Liu C, Yang Y, Liu H, Cui J, et al. Inhibition of TBK1 attenuates radiation-induced epithelial–mesenchymal transition of A549 human lung cancer cells via activation of GSK-3β and repression of ZEB1. Lab Investig. 2014;94:362–70.

    Article  CAS  Google Scholar 

  22. Huang C, Lin C, Huang Y, Wei L, Ting L, Kuo C, et al. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells. Biotechnol Appl Biochem. 2017;64:165–73.

    Article  CAS  Google Scholar 

  23. Nickoloff B, Osborne B, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22:6598–608.

    Article  CAS  Google Scholar 

  24. Wang J, Wakeman T, Lathia J, Hjelmeland A, Wang X, White R, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010;28:17–28.

    Article  CAS  Google Scholar 

  25. Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol. 2008;216:418–27.

    Article  CAS  Google Scholar 

  26. Jiang J, Yi B, Ding S, Sun J, Cao W, Liu M. Demethylation drug 5-Aza-2′-deoxycytidine-induced upregulation of miR-200c inhibits the migration, invasion and epithelial-mesenchymal transition of clear cell renal cell carcinoma in vitro. Oncol Lett. 2016;11:3167–72.

    Article  CAS  Google Scholar 

  27. Zhang Z, Cao H, Huang D, Wu Q, Chen X, Wan J, et al. MicroRNA-200c plays an oncogenic role in nasopharyngeal carcinoma by targeting PTEN. Tumor Biol 2017;39:101042831770365.

    Article  Google Scholar 

  28. Si L, Tian H, Yue W, Li L, Li S, Gao C, et al. Potential use of microRNA-200c as a prognostic marker in non-small cell lung cancer. Oncol Lett. 2017;14:4325–30.

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed using equipment from Biomika Shared Access Center and the unique KODINK research facility, DNA samples from Shared Access Center “Collection of Human Biologic Materials” (Institute of Biochemistry and Genetics UFRS RAS). This work was supported by the Russian Foundation for Basic Research grant (project no. 17-44-020050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill V. Bulygin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilyazova, I.R., Klimentova, E.A., Bulygin, K.V. et al. MicroRNA-200 family expression analysis in metastatic clear cell renal cell carcinoma patients. Cancer Gene Ther 27, 768–772 (2020). https://doi.org/10.1038/s41417-019-0149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0149-z

Search

Quick links