Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: The interaction between microRNA-152 and DNA methyltransferase-1 as an epigenetic prognostic biomarker in HCV-induced liver cirrhosis and HCC patients

This article was retracted on 22 June 2022

A Correction to this article was published on 22 February 2022

This article has been updated

Abstract

The necessity for early detection and hence improving the outcome of treatment of hepatocellular carcinoma (HCC) is critical especially in Hepatitis C virus (HCV)-Genotype 4 induced cases. In our current work, we examined the miRNA-152 and DNMT-1 expression in chronic liver disease (CLD) due to HCV genotype 4 infection with/without cirrhosis and HCC patients as an attempt to evaluate the potential benefits of these new circulating, noninvasive, prognostic, epigenetic markers for liver cirrhosis and carcinogenesis of Egyptian patients. Eighty subjects were included in this study, divided into two groups; group I (40 patients) were classified into subgroup Ia (CLD without cirrhosis, n = 18) and subgroup Ib (CLD with cirrhosis, n = 22), group II (CLD patients with HCC, n = 20), and control (Healthy volunteer, n = 20). The expression of miRNA-152 and DNMT-1 genes were analyzed using Real-Time PCR. MiRNA-152 showed a persistent and significant downregulation in all diseased groups, which was in consistence with the progression of the disease toward the HCC stage. DNMT-1 showed upregulation in all diseased groups when compared to control and subgroup Ia. The miRNA-152 was shown to correlate inversely with DNMT-1 in subgroup Ia, Ib and group II (r = −0.557, p < 0.01), (r = −0.850, p < 0.001) and (r = −0.544, p < 0.02) respectively. In addition, miRNA-152 and DNMT-1 showed a diagnostic ability to discriminate between cases of cirrhosis and HCC against CLD without cirrhosis (p < 0.01), while DNMT-1 did not, except between HCC and cirrhotic cases. Furthermore, both genes can be considered as predictor and prognostic parameters for cirrhosis (OR = 1.041, p = 0.043) and (OR = 1.039, p = 0.04) respectively, while miRNA-152 alone is proved as a prognostic marker for HCC (OR = 1.003, p = 0.044). Finally, the persistent reverse correlation between miRNA-152 with DNMT-1 prompts their use as noninvasive prognostic biomarkers for HCV induced liver cirrhosis and HCC in HCV Genotype 4 patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. El-Zanaty F, Way A. Egypt Demographic and Health Survey 2008. Cairo, Egypt: Ministry of Health, El-Zanaty and Associates, and Macro International; 2009.

    Google Scholar 

  2. Ministry of Health and Population [Egypt]. El-Zanaty and Associates [Egypt] and ICF International. Egypt Health Issues Survey 2015. Cairo, Egypt and Rockville, MD, USA: Ministry of Health and Population and ICF International; 2015.

  3. Hanafiah M, Groeger J, Flaxman D, Wiersma T. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57:1333.

    Article  Google Scholar 

  4. Zoheiry M, Hasan S, El-Ahwany E, Nagy F, Taleb H, Nosseir M, et al. Serum markers of epithelial mesenchymal transition as predictors of HCV-induced liver fibrosis, cirrhosis and hepatocellular carcinoma. Electron Physician 20. 2015;7:1626.

    Article  Google Scholar 

  5. Schanzer D, Paquette D, Lix L. Historical trends and projected hospital admissions for chronic hepatitis C infection in Canada: a birth cohort analysis. CMAJ. 2014;2:139.

    Article  Google Scholar 

  6. Brian P, Thomas J, Zahra Y, Yousef F, Zobair M. The changing landscape of hepatitis C virus therapy: focus on interferon-free treatment. Ther Adv Gastroenterol. 2015;8:298.

    Article  CAS  Google Scholar 

  7. Adams L, George J, Burgianesi E, Rossi E, De-Boer W, Van-der P, et al. Complex noninvasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver diseases. J Gastroenterol Hepatol. 2011;26:1536.

    Article  CAS  PubMed  Google Scholar 

  8. Sharma S, Khalili K, Nguyen G. Non-invasive diagnosis of advanced fibrosis and cirrhosis. World J Gastroenterol. 2014;20:16820.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li X, Wang Y, Wang H, Huang C, Huang Y, Li J. Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm Res. 2015;64:1.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang F, Parsons C, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling path way inactivation. J Hepatol. 2006;45:401.

    Article  CAS  PubMed  Google Scholar 

  11. De-Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner D, et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology. 2007;132:1937.

    Article  CAS  PubMed  Google Scholar 

  12. Coll M, El-Taghdouini A, Perea L, Mannaerts I, Vila-Casadesús M, Blaya D, et al. Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci Rep. 2015;5:1549.

    Article  Google Scholar 

  13. Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901.

    Article  CAS  PubMed  Google Scholar 

  14. Roderburg C, Luedde T. Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol. 2014;61:1434.

    Article  PubMed  Google Scholar 

  15. Lambrecht J, Inge M, Leo A. The role of miRNAs in stress responsive hepatic stellate cells during liver fibrosis. Front Physiol. 2015;209:1.

    Google Scholar 

  16. Varambally S, Cao Q, Mani R, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balaguer F, Link A, Lozano J, Cuatrecasas M, Nagasaka T, Boland C, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 2010;70:6609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang Y, Zeng J, He R, Rong M, Luo D, Chen G. Effects of miR-152 on cell growth inhibition, motility suppression and apoptosis induction in hepatocellular carcinoma cells. Asian Pac J Cancer Prev. 2014;15:4969.

    Article  PubMed  Google Scholar 

  19. Zhai R, Kan X, Wang B, Du H, Long Y, Wu H, et al. miR-152 suppresses gastric cancer cell proliferation and motility by targeting CD151. Tumour Biol. 2014;35:11367.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Xiyun D, Xiaomin Z, Xiaoning P. The Role of Mir-148a in Cancer. J Cancer. 2016;7:1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and microRNAs in cancer. Int J Mol Sci. 2018;19:459.

    Article  PubMed Central  CAS  Google Scholar 

  22. Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 2010;51:881.

    CAS  PubMed  Google Scholar 

  23. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus–related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60.

    Article  CAS  PubMed  Google Scholar 

  24. Bian E, Zhao B, Huang C, Wang H, Meng X, Wu B, et al. New advances of DNA methylation in liver fibrosis, with special emphasis on the crosstalk between microRNAs and DNA methylation machinery. Cell Signal. 2013;25:1837.

    Article  CAS  PubMed  Google Scholar 

  25. Huang J, Yu X, Fries J, Zhang L, Odenthal M. MicroRNA function in the profibrogenic interplay upon chronic liver disease. Int J Mol Sci. 2014a;15:9360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruix J, Sherman M. American Association for the Study of Liver Diseases (AASLD) practice guidelines. management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020.

    Article  PubMed  Google Scholar 

  27. Wang X. MiRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA. 2008;14:1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kindrat I, Tryndyak V, de Conti A, Shpyleva S, Mudalige T, Kobets T, et al. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget 12. 2016;7:1276.

    Article  Google Scholar 

  29. Liu X, Li J, Qin F, Dai S. miR-152 as a tumor suppressor microRNA: target recognition and regulation in cancer. Oncol Lett. 2016;11:3911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011;71:6450.

    Article  CAS  PubMed  Google Scholar 

  31. Huang S, Xie Y, Yang P, Chen P, Zhang. HCV core protein-induced downregulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells. PLoS One 9. 2014b;9:81730.

    Article  CAS  Google Scholar 

  32. Miquelestorena-Standley E, Tallet A, Collin C, Piver E, De-Muret A, Salamé E, et al. Interest of variations in microRNA-152 and -122 in a series of hepatocellular carcinomas related to hepatitis C virus infection. Hepatol Res. 2018;48:566.

    Article  CAS  PubMed  Google Scholar 

  33. Jair K, Bachman K, Suzuki H, Ting A, Rhee I, Yen R, et al. De novo CpG island methylation in human cancer cells. Cancer Res. 2006;66:682.

    Article  CAS  PubMed  Google Scholar 

  34. Albrengues J, Bertero T, Grasset E, Bonan S, Maiel M, Bourget I, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun. 2015;6:10204.

    Article  CAS  PubMed  Google Scholar 

  35. Nagai M, Nakamura A, Makino R, Mitamura K. Expression of DNA (5-cytosin)- methyltransferases (DNMTs) in hepatocellular carcinomas. Hepatol Res. 2003;26:186.

    Article  CAS  PubMed  Google Scholar 

  36. Arora P, Kim E, Jung J, Jang K. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 2008;261:244.

    Article  CAS  PubMed  Google Scholar 

  37. Yu F, Lu Z, Chen B, Wu X, Dong P, Zheng J. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT-1-mediated Patched1 methylation. J Cell Mol Med. 2015;19:2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu Z, Du M, Qian L, Zhang N, Gu J, Ding K, et al. MiR-152 functioning as a tumor suppressor that interacts with DNMT-1 in nasopharyngeal carcinoma. Onco Targets Ther. 2018;11:1733.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int. 2015;2015:1.

    Google Scholar 

  40. Nelson H, Kazuaki C. MicroRNAs as biomarkers for liver disease and hepatocellular carcinoma. Int J Mol Sci 24. 2016;17:280.

    Article  CAS  Google Scholar 

  41. Rupaimoole R, Slack F. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Disco. 2017;16:203.

    Article  CAS  Google Scholar 

  42. Pallante P, Visone R, Ferracin M, Troncone G. MicroRNA deregulation in human thyroid papillary carcinomas. Endocrine-Related Cancer. 2006;13:497.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to all anonymous donors of the blood samples used in this study. Dr. Mahmoud Khalifa, mahmoud.khalifa@azhar.edu.eg, Faculty of Science, Al-Azhar University, in addition of his co-authorship participation, provided valuable help in writing the manuscript and editing the revised manuscript, both for language as well as scientific issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rady E. El-Araby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41417-022-00496-9

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Araby, R.E., Khalifa, M.A., Zoheiry, M.M. et al. RETRACTED ARTICLE: The interaction between microRNA-152 and DNA methyltransferase-1 as an epigenetic prognostic biomarker in HCV-induced liver cirrhosis and HCC patients. Cancer Gene Ther 27, 486–497 (2020). https://doi.org/10.1038/s41417-019-0123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0123-9

This article is cited by

Search

Quick links