Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potential usefulness of Brevibacillus for bacterial cancer therapy: intratumoral provision of tumor necrosis factor-α and anticancer effects

Abstract

Bacterial cancer therapy, wherein bacteria are used as a gene expression system for the exogenous protein of interest in the body, has started becoming a focus area of research; therefore, studying potential bacterial species for use is extremely important. Here, we investigated the use of Brevibacillus choshinensis as an effective and safe provider of anticancer proteins in the body, using a transformant expressing murine tumor necrosis factor-α (mTNF-α). The transformant sustainably provided mTNF-α in tumors in mice for a few hours post-injection. The growth of TNF-α-sensitive tumors was inhibited even by the control transformant, which did not provide mTNF-α; intratumoral mTNF-α provision by Brevibacillus choshinensis had additive effects on tumor growth inhibition. In contrast, intratumorally injected recombinant mTNF-α did not inhibit tumor growth because of rapid elimination from the tumor. Blood biochemical and histochemical analyses showed that intravenous injection of the transformant that did not provide mTNF-α did not lead to tissue injury and dysfunction or infiltration of inflammatory cells over 1 week. Considering the findings, this approach is expected to have a high degree of usability as a delivery system for protein pharmaceuticals, especially from the viewpoints of loading capacity and cost effectiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Horssen R, Ten Hagen TL, Eggermont AM. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11:397–408.

    Article  PubMed  Google Scholar 

  2. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11–22.

    Article  PubMed  CAS  Google Scholar 

  3. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13:655–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89:21–39.

    Article  PubMed  CAS  Google Scholar 

  5. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012—an update. J Gene Med. 2013;15:65–77.

    Article  PubMed  CAS  Google Scholar 

  6. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10:785–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, et al. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci. 2010;101:1925–32.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman RM. Tumor-seeking Salmonella amino acid auxotrophs. Curr Opin Biotechnol. 2011;22:917–23.

    Article  PubMed  CAS  Google Scholar 

  9. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    PubMed  CAS  Google Scholar 

  10. Kimura NT, Taniguchi S, Aoki K, Baba T. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 1980;40:2061–8.

    PubMed  CAS  Google Scholar 

  11. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 2000;7:269–74.

    Article  PubMed  CAS  Google Scholar 

  12. Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57:4537–44.

    PubMed  CAS  Google Scholar 

  13. Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 1955;15:473–8.

    PubMed  CAS  Google Scholar 

  14. Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Inhibition of tumor growth using salmonella expressing Fas ligand. J Natl Cancer Inst. 2008;100:1113–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ganai S, Arenas RB, Forbes NS. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer. 2009;101:1683–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sasaki T, Fujimori M, Hamaji Y, Hama Y, Ito K, Amano J, et al. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci. 2006;97:649–57.

    Article  PubMed  CAS  Google Scholar 

  17. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10:737–44.

    Article  PubMed  CAS  Google Scholar 

  18. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20:142–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother. 2003;26:179–80.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Takagi H, Kadowaki K, Udaka S. Screening and characterization of protein hyperproducing bacteria without detectable exoprotease activity. Agric Biol Chem. 1989;53:691–9.

    CAS  Google Scholar 

  21. Yamagata H, Nakahama K, Suzuki Y, Kakinuma A, Tsukakoshi N, Udaka S. Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc Natl Acad Sci USA. 1989;86:3589–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. St. Jean AT, Swofford CA, Panteli JT, Brentzel ZJ, Forbes NS. Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors. Mol Ther. 2014;22:1266–74.

    Article  CAS  Google Scholar 

  23. Rosenberg SA, Spiess PJ, Kleiner DE. Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother. 2002;25:218–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, et al. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA. 2004;101:15172–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hong EH, Chang SY, Lee BR, Pyun AR, Kim JW, Kweon MN, et al. Intratumoral injection of attenuated Salmonella vaccine can induce tumor microenvironmental shift from immune suppressive to immunogenic. Vaccine. 2013;31:1377–84.

    Article  PubMed  CAS  Google Scholar 

  26. Mizukami M, Hanagata H, Miyauchi A. Brevibacillus expression system: host-vector system for efficient production of secretory proteins. Curr Pharm Biotechnol. 2010;11:251–58.

    Article  PubMed  CAS  Google Scholar 

  27. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA. 2005;102:755–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66:7647–52.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA. 2007;104:10170–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Kishimoto H, Bouvet M, Hoffman RM. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle. 2009;8:870–5.

    Article  PubMed  CAS  Google Scholar 

  31. Kawaguchi K, Igarashi K, Murakami T, Chmielowski B, Kiyuna T, Zhao M, Zhang Y, Singh A, Unno M, Nelson SD, Russell TA, Dry SM, Li Y, Eilber FC, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget. 2016;7:85929–36.

    PubMed  PubMed Central  Google Scholar 

  32. Murakami T, Igarashi K, Kawaguchi K, Kiyuna T, Zhang Y, Zhao M, Hiroshima Y, Nelson SD, Dry SM, Li Y, Yanagawa J, Russell T, Federman N, Singh A, Elliott I, Matsuyama R, Chishima T, Tanaka K, Endo I, Eilber FC, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug. Oncotarget. 2017;8:8035–42.

    PubMed  Google Scholar 

  33. Igarashi K, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Nelson SD, Dry SM, Li Y, Yanagawa J, Russell TA, Singh AS, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Intra-arterial administration of tumor-targeting Salmonella typhimurium A1-R regresses a cisplatin-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Cell Cycle. 2017;16:1164–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yashiro K, Lowenthal JW, O’Neil TE, Ebisu S, Takagi H, Moore RJ. High-level production of recombinant chicken interferon-gamma by Brevibacillus choshinensis. Protein Expr Purif. 2001;23:113–20.

    Article  PubMed  CAS  Google Scholar 

  35. Hanagata H, Mizukami M, Miyauchi A. Efficient expression of antibody fragments with the Brevibacillus expression system. Antibodies. 2014;3:242–52.

    Article  CAS  Google Scholar 

  36. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, et al. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res. 2015;43:D837–43.

    Article  PubMed  CAS  Google Scholar 

  37. Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6:559–65.

    Article  PubMed  CAS  Google Scholar 

  38. Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today. 2003;8:259–66.

    Article  PubMed  CAS  Google Scholar 

  39. Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev. 2012;112:2853–88.

    Article  PubMed  CAS  Google Scholar 

  40. Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: overview and perspectives. J Control Release. 2016;240:24–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by JSPS KAKENHI (grant numbers 25640095 and 15K14415). We would like to thank Dr. Hirofumi Hamada (Tokyo University of Pharmacy and Life Sciences, School of Life Sciences) for providing pBluescript SKII+mTNF alpha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Mukai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukai, H., Takahashi, M. & Watanabe, Y. Potential usefulness of Brevibacillus for bacterial cancer therapy: intratumoral provision of tumor necrosis factor-α and anticancer effects. Cancer Gene Ther 25, 47–57 (2018). https://doi.org/10.1038/s41417-017-0009-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-017-0009-7

Search

Quick links