Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

EEF1A2 promotes HIF1A mediated breast cancer angiogenesis in normoxia and participates in a positive feedback loop with HIF1A in hypoxia

Abstract

Background

The eukaryotic elongation factor, EEF1A2, has been identified as an oncogene in various solid tumors. Here, we have identified a novel function of EEF1A2 in angiogenesis.

Methods

Chick chorioallantoic membrane, tubulogenesis, aortic ring, Matrigel plug, and skin wound healing assays established EEF1A2’s role in angiogenesis.

Result

Higher EEF1A2 levels in breast cancer cells enhanced cell growth, movement, blood vessel function, and tubule formation in HUVECs, as confirmed by ex-ovo and in-vivo tests. The overexpression of EEF1A2 could be counteracted by Plitidepsin. Under normoxic conditions, EEF1A2 triggered HIF1A expression via ERK-Myc and mTOR signaling in TNBC and ER/PR positive cells. Hypoxia induced the expression of EEF1A2, leading to a positive feedback loop between EEF1A2 and HIF1A. Luciferase assay and EMSA confirmed HIF1A binding on the EEF1A2 promoter, which induced its transcription. RT-PCR and polysome profiling validated that EEF1A2 affected VEGF transcription and translation positively. This led to increased VEGF release from breast cancer cells, activating ERK and PI3K-AKT signaling in endothelial cells. Breast cancer tissues with elevated EEF1A2 showed higher microvessel density.

Conclusion

EEF1A2 exhibits angiogenic potential in both normoxic and hypoxic conditions, underscoring its dual role in promoting EMT and angiogenesis, rendering it a promising target for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of EEF1A2 perturbation in breast cancer cells on proliferation, migration, and tubule formation of HUVECs.
Fig. 2: Effect of EEF1A2 expression in breast cancer cells on angiogenesis in ex-ovo and in-vivo model systems.
Fig. 3: Paracrine Effect of EEF1A2 perturbation in cancer cell lines on VEGF-HIF1A, PI3k/AKT, and ERK signaling in HUVECs.
Fig. 4: HIF1A induces EEF1A2 expression irrespective molecular subtypes of cancer cells.
Fig. 5: HIF1A directly binds to EEF1A2 promoter region.
Fig. 6: Effect of EEF1A2 expression modulation on ERK/Myc signaling in TNBC and mTOR signaling in ER/PR+ breast cancer cell lines, and paracrine influence on endothelial cells.
Fig. 7: Effect of EEF1A2 levels and its pharmacological inhibitor on tumor progression in BALB/c mice.
Fig. 8: Effect of EEF1A2 expression and its association with MVD (CD31) in mouse model and breast cancer patient samples.

Similar content being viewed by others

Data availability

All data and materials related to this research are available in the manuscript or supplementary information.

References

  1. Wang R, Zhu Y, Liu X, Liao X, He J, Niu L. The clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer. 2019;19:1–12.

    Article  Google Scholar 

  2. Foote RL, Weidner N, Harris J, Hammond E, Lewis JE, Vuong T, et al. Evaluation of tumor angiogenesis measured with microvessel density (MVD) as a prognostic indicator in nasopharyngeal carcinoma: results of RTOG 9505. Int J Radiat Oncol Biol Phys. 2005;61:745–53.

    Article  PubMed  Google Scholar 

  3. Bais C, Mueller B, Brady MF, Mannel RS, Burger RA, Wei W, et al. Tumor microvessel density as a potential predictive marker for bevacizumab benefit: GOG-0218 biomarker analyses. J Natl Cancer Inst. 2017;109:djx066.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mucci LA, Powolny A, Giovannucci E, Liao Z, Kenfield SA, Shen R, et al. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol. 2009;27:5627.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2:1117–33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes Cancer. 2011;2:1097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abbas W, Kumar A, Herbein G. The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections. Front Oncol. 2015;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet. 2002;31:301–5.

    Article  CAS  PubMed  Google Scholar 

  10. Cao H, Zhu Q, Huang J, Li B, Zhang S, Yao W, et al. Regulation and functional role of eEF1A2 in pancreatic carcinoma. Biochem Biophys Res Commun. 2009;380:11–6.

    Article  CAS  PubMed  Google Scholar 

  11. Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, et al. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR‐dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology. 2014;59:1886–99.

    Article  CAS  PubMed  Google Scholar 

  12. Kulkarni G, Turbin DA, Amiri A, Jeganathan S, Andrade-Navarro MA, Wu TD, et al. Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer. Breast Cancer Res Treat. 2007;102:31–41.

    Article  CAS  PubMed  Google Scholar 

  13. Hassan MK, Kumar D, Patel SA, Dixit M. EEF1A2 triggers stronger ERK mediated metastatic program in ER negative breast cancer cells than in ER positive cells. Life Sci. 2020;262:118553.

    Article  CAS  PubMed  Google Scholar 

  14. Knowles HJ, Cleton-Jansen A, Korsching E, Athanasou NA. Hypoxia‐inducible factor regulates osteoclast‐mediated bone resorption: role of angiopoietin‐like 4. FASEB J. 2010;24:4648–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell. 2002;1:237–46.

    Article  CAS  PubMed  Google Scholar 

  16. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar D, Patel SA, Khan R, Chawla S, Mohapatra N, Dixit M. IQ Motif-containing GTPase-activating protein 2 inhibits breast cancer angiogenesis by suppressing VEGFR2–AKT signaling. Mol Cancer Res. 2022;20:77–91.

    Article  CAS  PubMed  Google Scholar 

  18. Naik M, Brahma P, Dixit M. A cost-effective and efficient chick ex-ovo CAM assay protocol to assess angiogenesis. Methods Protoc. 2018;1:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rio DC, Ares M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010:pdb-prot5439.

    Article  PubMed  Google Scholar 

  20. Kang H. Sample size determination and power analysis using the G* Power software. J Educ Eval Health Prof. 2021;18:17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15:1–18.

    Article  Google Scholar 

  22. Wang Y, Yang C, Gu Q, Sims M, Gu W, Pfeffer LM, et al. KLF4 promotes angiogenesis by activating VEGF signaling in human retinal microvascular endothelial cells. PLoS One. 2015;10:e0130341.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5:378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front Cell Dev Biol. 2020;8:599281.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Doe MR, Ascano JM, Kaur M, Cole MD. Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res. 2012;72:949–57.

    Article  CAS  PubMed  Google Scholar 

  26. Lee T, Yao G, Nevins J, You L. Sensing and integration of Erk and PI3K signals by Myc. PLoS Comput Biol. 2008;4:e1000013.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015;34:2239–50.

    Article  CAS  PubMed  Google Scholar 

  28. Xu C, Hu D, Zhu Q. eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin Exp Metastasis. 2013;30:933–44.

    Article  PubMed  Google Scholar 

  29. Worst TS, Waldbillig F, Abdelhadi A, Weis C-A, Gottschalt M, Steidler A, et al. The EEF1A2 gene expression as risk predictor in localized prostate cancer. BMC Urol. 2017;17:1–9.

    Article  Google Scholar 

  30. Jia L, Ge X, Du C, Chen L, Zhou Y, Xiong W, et al. EEF1A2 interacts with HSP90AB1 to promote lung adenocarcinoma metastasis via enhancing TGF-β/SMAD signalling. Br J Cancer. 2021;124:1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Losada A, Muñoz-Alonso MJ, Martínez-Díez M, Gago F, Domínguez JM, Martínez-Leal JF, et al. Binding of eEF1A2 to the RNA-dependent protein kinase PKR modulates its activity and promotes tumour cell survival. Br J Cancer. 2018;119:1410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-inducible factors and cancer. Curr Sleep Med Rep. 2017;3:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee Y-H, Bae HC, Noh KH, Song K-H, Ye S, Mao C-P, et al. Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA AxesHIF-1α mediates cancer immune adaptation. Clin Cancer Res. 2015;21:1438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang J, Tang J, Li J, Cen Y, Chen J, Dai G. Effect of activation of the Akt/mTOR signaling pathway by EEF1A2 on the biological behavior of osteosarcoma. Ann Transl Med. 2021;9:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Qi C-F, Shin D-M, Zingone A, Newbery HJ, Kovalchuk AL, et al. Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas. PLoS One. 2010;5:e10755.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsai W-B, Aiba I, Long Y, Lin H-K, Feun L, Savaraj N, et al. Activation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells. Cancer Res. 2012;72:2622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nilsson M, Heymach JV. Vascular endothelial growth factor (VEGF) pathway. J Thorac Oncol. 2006;1:768–70.

    Article  PubMed  Google Scholar 

  38. Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002;16:2530–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci. 2003;100:8164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, et al. SNX16 activates c‐Myc signaling by inhibiting ubiquitin‐mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol. 2020;14:387–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forsythe JA, Jiang B-H, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mezquita P, Parghi SS, Brandvold KA, Ruddell A. Myc regulates VEGF production in B cells by stimulating initiation of VEGF mRNA translation. Oncogene. 2005;24:889–901.

    Article  CAS  PubMed  Google Scholar 

  43. Land SC, Tee AR. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007;282:20534–43.

    Article  CAS  PubMed  Google Scholar 

  44. Sengupta T, Abraham G, Xu Y, Clurman BE, Minella AC. Hypoxia-inducible factor 1 is activated by dysregulated cyclin E during mammary epithelial morphogenesis. Mol Cell Biol. 2011;31:3885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu Y, Zhao D, Li K, Cai Y, Xu P, Li R, et al. E2F1 mediated DDX11 transcriptional activation promotes hepatocellular carcinoma progression through PI3K/AKT/mTOR pathway. Cell Death Dis. 2020;11:273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mavria G, Vercoulen Y, Yeo M, Paterson H, Karasarides M, Marais R, et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell. 2006;9:33–44.

    Article  CAS  PubMed  Google Scholar 

  47. Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, et al. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife. 2014;3:e03164.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Binet F, Sapieha P. ER stress and angiogenesis. Cell Metab. 2015;22:560–75.

    Article  CAS  PubMed  Google Scholar 

  49. Xiao W, Wang J, Ou C, Zhang Y, Ma L, Weng W, et al. Mutual interaction between YAP and c-Myc is critical for carcinogenesis in liver cancer. Biochem Biophys Res Commun. 2013;439:167–72.

    Article  CAS  PubMed  Google Scholar 

  50. Henze A-T, Acker T. Feedback regulators of hypoxia-inducible factors and their role in cancer biology. Cell cycle. 2010;9:2821–35.

    Article  Google Scholar 

  51. Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One. 2018;13:e0191377.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Losada A, Muñoz-Alonso MJ, García C, Sánchez-Murcia PA, Martínez-Leal JF, Domínguez JM, et al. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci Rep. 2016;6:1–15.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Saurabh Chawla, NISER, Bhubaneswar, India for helping with animal experiments. We thank Dr. Anup Kumar Ram and Dr. Pankaj V Alone for guidance in polysome analysis. We thank Ananya Palo, Soham Choudhury, Deeptima Jaiswar, and Talina Mohapatra for measuring absorbance of polysome fractions. We thank Ruchika Rai for helping in power analysis. We thank Shubhanjali and Anamika Singh for the bioinformatic data analysis. This work was supported by intramural funding from the National Institute of Science Education and Research (NISER), Department of Atomic Energy (DAE), Government of India (GOI). SAP, MKH, and MN received fellowships from NISER, DAE, GOI.

Funding

We thank National Institute of Science Education and Research (Department of Atomic Energy), the Government of India (GOI) for providing infrastructure, and intramural support.

Author information

Authors and Affiliations

Authors

Contributions

SAP performed majority of the in vivo experiments; wound healing assay, matrigel plug assay, tumor development in mice, IHC of 92 samples and mice tissue, represented in Figs. 2cf, 7ah, 8a–f, Supplementary Fig. 9A–E and in vitro experiments; Western blot, EMSA, Luciferase, polysome assay, qRT-PCR, tubulogenesis, proliferation assay, ELISA, represented in Figs. 1a, c, d, 3an, 4ai, 5aj, 6a–n, and Supplementary Figs. 1C–G, 2A, B, 3A–D, 4B, 6A–L, 7A–F, 8A–L, data curation, formal analysis, and writing original draft and editing; MKH performed the in vitro experiments of Figs. 1b, c, 3a, 8e, Supplementary Fig. 1A, 1B, 1H, 1I, 5A-D, and performed IHC of 96 samples (Fig. 8e), wrote the original draft partly; MN performed the CAM assay (Fig. 2a) and Matrigel Plug assay (Supplementary Fig. 4A, B, D); NM analysed and scored patient IHC samples, PB performed and analysed the experiment given in Fig. 2b; PSK supervised the experiments carried out for generating Fig. 2b; MD conceptualized the whole project, designed experiments, planned and guided the research, formal analysis, supervision, funding acquisition, resources, review and editing the manuscript.

Corresponding author

Correspondence to Manjusha Dixit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal experiment was approved by Institutional Animal Ethics Committee, NISER, India (protocol-NISER/SBS/AH184), (protocol-NISER/SBS/AH/224), and (protocol-NISER/SBS/AH/170) and conducted at NISER animal house facility. Human samples-based study was approved by the Institutional Ethics Committee, NISER, Bhubaneswar, India (protocol-NISER/IEC/2016–02).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.A., Hassan, M.K., Naik, M. et al. EEF1A2 promotes HIF1A mediated breast cancer angiogenesis in normoxia and participates in a positive feedback loop with HIF1A in hypoxia. Br J Cancer 130, 184–200 (2024). https://doi.org/10.1038/s41416-023-02509-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02509-2

Search

Quick links