Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo

Abstract

The overexpression of SOX4 in various kinds of cancer cells was associated with poor prognosis for patients. The role of SOX4 in angiogenesis and tumor microenvironment modulation was recently documented in breast cancer but remains unclear in hepatocellular carcinoma (HCC). In our study, the clinical relevance of SOX4 overexpression in HCC and its role in the tumor microenvironment were investigated. The overexpression of SOX4 (SOX4high) in tumor lesions was associated with higher microvessel density (P = 0.012), tumor thrombosis formation (P = 0.012), distant metastasis (P < 0.001), and an independent prognostic factor for disease-free survival in HCC patients (P = 0.048). Endogenous SOX4 knockout in Hep3B cells by the CRISPR/cas9 system reduced the expression of CXCL12, which, in turn, attenuated chemotaxis in human umbilical vein endothelial cells, tube formation in vitro, reduced tumor growth, reticular fiber production, and angiogenesis in vivo in a xenograft mouse model. Treatment with an antagonist targeting CXCR4 (AMD3100), a receptor of CXCL12, inhibited chemotaxis and tube formation in endothelial cells in vitro. The CXCL12 promoter was activated by ectopic expression of a Flag-tagged SOX4 plasmid, endogenous SOX4 knockdown abolished promoter activity of CXCL12 as shown by luciferase assays, and an association with the CXCL12 promoter was identified via chromatin immunoprecipitation in HCC cells. In conclusion, SOX4 modulates the CXCL12 promoter in HCC cells. The secretory CXCL12, in turn, modulates CXCR4 in endothelial cells, reticular fibers to regulate the tumor microenvironment and modulate neovascularization, which might contribute to the distant metastasis of tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The overexpression of SOX4 was associated with poor prognosis in patients with hepatocellular carcinoma (HCC).
Fig. 2: Knockout of endogenous expression of SOX4 in hepatocellular carcinoma (HCC) cell lines via the CRISPR/cas9 system attenuated chemotaxis of endothelial cells and reduced expression of CXCL12.
Fig. 3: SOX4 regulated the CXCL12 promoter.
Fig. 4: The chemotaxis of endothelial cells was impaired when SOX4 or CXCL12 was knocked down in Hep3B cells.
Fig. 5: SOX4 modulates tube formation through the CXCR4-CXCL12 axis.
Fig. 6: Tumor growth in vivo was impaired when endogenous SOX4 expression was knocked out.
Fig. 7: H&E, trichrome, reticulin, SOX4, and CD34 staining in tumor sections were derived from Hep3B or Hep3B SOX4−/− cells.

Similar content being viewed by others

References

  1. Sartorius K, Sartorius B, Aldous C, Govender PS, Madiba TE. Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications. Cancer Epidemiol. 2015;39:284–90.

    CAS  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  3. Choi C, Choi GH, Kim TH, Tanaka M, Meng MB, Seong J. Multimodality management For Barcelona Clinic Liver Cancer stage C hepatocellular carcinoma. Liver Cancer. 2014;3:405–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fong ZV, Tanabe KK. The clinical management of hepatocellular carcinoma in the United States, Europe, and Asia: a comprehensive and evidence-based comparison and review. Cancer. 2014;120:2824–38.

    PubMed  Google Scholar 

  5. Kow AW, Kwon CH, Song S, Shin M, Kim JM, Joh JW. Risk factors of peritoneal recurrence and outcome of resected peritoneal recurrence after liver resection in hepatocellular carcinoma: review of 1222 cases of hepatectomy in a tertiary institution. Ann Surg Oncol. 2012;19:2246–55.

    PubMed  PubMed Central  Google Scholar 

  6. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    CAS  PubMed  Google Scholar 

  7. Keating GM. Sorafenib: a review in hepatocellular carcinoma. Target Oncol. 2017;12:243–53.

    PubMed  Google Scholar 

  8. Jin PP, Shao SY, Wu WT, Zhao XY, Huang BF, Fu QH, et al. Combination of transarterial chemoembolization and sorafenib improves outcomes of unresectable hepatocellular carcinoma: an updated systematic review and meta-analysis. Jpn J Clin Oncol. 2018;48:1058–69.

    PubMed  Google Scholar 

  9. Gores GJ. Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol. 2014;11:645–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010;21:27–39.

    CAS  PubMed  Google Scholar 

  11. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702.

    CAS  PubMed  Google Scholar 

  12. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35:816–26.

    CAS  PubMed  Google Scholar 

  14. Liu H, Pan Z, Li A, Fu S, Lei Y, Sun H, et al. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell Mol Immunol. 2008;5:373–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shah AD, Bouchard MJ, Shieh AC. Interstitial fluid flow increases hepatocellular carcinoma cell invasion through CXCR4/CXCL12 and MEK/ERK signaling. PLoS ONE. 2015;10:e0142337.

    PubMed  PubMed Central  Google Scholar 

  16. Semaan A, Dietrich D, Bergheim D, Dietrich J, Kalff JC, Branchi V, et al. CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Arch. 2017;470:185–96.

    CAS  PubMed  Google Scholar 

  17. Polimeno MN, Ierano C, D’Alterio C, Losito NS, Napolitano M, Portella L, et al. CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not. Cell Mol Immunol. 2015;12:474–82.

    Google Scholar 

  18. Ghanem I, Riveiro ME, Paradis V, Faivre S, de Parga PM, Raymond E. Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res. 2014;6:340–52.

    PubMed  PubMed Central  Google Scholar 

  19. Shibuta K, Mori M, Shimoda K, Inoue H, Mitra P, Barnard GF. Regional expression of CXCL12/CXCR4 in liver and hepatocellular carcinoma and cell-cycle variation during in vitro differentiation. Jpn J Cancer Res. 2002;93:789–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29:709–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fang CL, Hseu YC, Lin YF, Hung ST, Tai C, Uen YH, et al. Clinical and prognostic association of transcription factor SOX4 in gastric cancer. PLoS ONE. 2012;7:e52804.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasegawa S, Nagano H, Konno M, Eguchi H, Tomokuni A, Tomimaru Y, et al. A crucial epithelial to mesenchymal transition regulator, Sox4/Ezh2 axis is closely related to the clinical outcome in pancreatic cancer patients. Int J Oncol. 2016;48:145–52.

    CAS  PubMed  Google Scholar 

  23. Koumangoye RB, Andl T, Taubenslag KJ, Zilberman ST, Taylor CJ, Loomans HA, et al. SOX4 interacts with EZH2 and HDAC3 to suppress microRNA-31 in invasive esophageal cancer cells. Mol Cancer. 2015;14:24.

    PubMed  PubMed Central  Google Scholar 

  24. Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL, et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene. 2008;27:5578–89.

    CAS  PubMed  Google Scholar 

  25. Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S, et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet. 2009;18:1343–52.

    CAS  PubMed  Google Scholar 

  26. Parvani JG, Schiemann WP. Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT. Breast Cancer Res. 2013;15:R72.

    PubMed  PubMed Central  Google Scholar 

  27. Wang B, Li Y, Tan F, Xiao Z. Increased expression of SOX4 is associated with colorectal cancer progression. Tumour Biol. 2016;37:9131–7.

    CAS  PubMed  Google Scholar 

  28. Cheung M, Abu-Elmagd M, Clevers H, Scotting PJ. Roles of Sox4 in central nervous system development. Brain Res Mol Brain Res. 2000;79:180–91.

    CAS  PubMed  Google Scholar 

  29. Foronda M, Martinez P, Schoeftner S, Gomez-Lopez G, Schneider R, Flores JM, et al. Sox4 links tumor suppression to accelerated aging in mice by modulating stem cell activation. Cell Rep. 2014;8:487–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kee BL. Sox4 B-lymphocyte progenitors. Blood. 2014;123:4009–10.

    CAS  PubMed  Google Scholar 

  31. Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res. 2012;72:4597–608.

    CAS  PubMed  Google Scholar 

  32. Vervoort SJ, de Jong OG, Roukens MG, Frederiks CL, Vermeulen JF, Lourenco AR, et al. Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. Elife. 2018;7:e27706.

    PubMed  PubMed Central  Google Scholar 

  33. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Google Scholar 

  35. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    PubMed  PubMed Central  Google Scholar 

  36. Inoue H, Takahashi H, Hashimura M, Eshima K, Akiya M, Matsumoto T, et al. Cooperation of Sox4 with beta-catenin/p300 complex in transcriptional regulation of the Slug gene during divergent sarcomatous differentiation in uterine carcinosarcoma. BMC Cancer. 2016;16:53.

    PubMed  PubMed Central  Google Scholar 

  37. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    PubMed  Google Scholar 

  38. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75.

    PubMed  PubMed Central  Google Scholar 

  39. Kasagi Y, Harada Y, Morodomi Y, Iwai T, Saito S, Yoshida K, et al. Peritoneal dissemination requires an Sp1-dependent CXCR4/CXCL12 signaling axis and extracellular matrix-directed spheroid formation. Cancer Res. 2016;76:347–57.

    CAS  PubMed  Google Scholar 

  40. Wang L, Li Y, Yang X, Yuan H, Li X, Qi M, et al. ERG-SOX4 interaction promotes epithelial-mesenchymal transition in prostate cancer cells. Prostate. 2014;74:647–58.

    CAS  PubMed  Google Scholar 

  41. Boogerd CJ, Wong LY, van den Boogaard M, Bakker ML, Tessadori F, Bakkers J, et al. Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43. Cell Mol Life Sci. 2011;68:3949–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lai YH, Cheng J, Cheng D, Feasel ME, Beste KD, Peng J, et al. SOX4 interacts with plakoglobin in a Wnt3a-dependent manner in prostate cancer cells. BMC Cell Biol. 2011;12:50.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan X, Li H, Zhang P, Jin B, Man J, Tian L, et al. Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem Biophys Res Commun. 2006;344:727–34.

    CAS  PubMed  Google Scholar 

  44. Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, et al. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol. 2007;27:7802–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong Y, Zheng Q, Wang Z, Lin X, You Y, Wu S, et al. Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J Hematol Oncol. 2019;12:112.

    PubMed  PubMed Central  Google Scholar 

  46. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.

    CAS  PubMed  Google Scholar 

  47. Tadeo I, Berbegall AP, Castel V, Garcia-Miguel P, Callaghan R, Pahlman S, et al. Extracellular matrix composition defines an ultra-high-risk group of neuroblastoma within the high-risk patient cohort. Br J Cancer. 2016;115:480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. You Y, Zheng Q, Dong Y, Xie X, Wang Y, Wu S, et al. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells. Oncotarget. 2016;7:32221–31.

    PubMed  PubMed Central  Google Scholar 

  49. Sethi A, Mao W, Wordinger RJ, Clark AF. Transforming growth factor-beta induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2011;52:5240–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Neve Polimeno M, Ierano C, D’Alterio C, Simona Losito N, Napolitano M, Portella L, et al. CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not. Cell Mol Immunol. 2015;12:474–82.

    CAS  PubMed  Google Scholar 

  51. Xu J, Liang J, Meng YM, Yan J, Yu XJ, Liu CQ, et al. Vascular CXCR4 expression promotes vessel sprouting and sensitivity to sorafenib treatment in hepatocellular carcinoma. Clin Cancer Res. 2017;23:4482–92.

    CAS  PubMed  Google Scholar 

  52. Fang JH, Xu L, Shang LR, Pan CZ, Ding J, Tang YQ, et al. Vessels that encapsulate tumor clusters (VETC) pattern is a predictor of sorafenib benefit in patients with hepatocellular carcinoma. Hepatology. 2019;70:824–39.

    CAS  PubMed  Google Scholar 

  53. Hanley KL, Feng GS. A new VETC in hepatocellular carcinoma metastasis. Hepatology. 2015;62:343–5.

    PubMed  Google Scholar 

  54. Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15:299–311.

    CAS  PubMed  Google Scholar 

  55. Chun YS, Pawlik TM, Vauthey JN. 8th edition of the AJCC cancer staging manual: pancreas and hepatobiliary cancers. Ann Surg Oncol. 2018;25:845–7.

    PubMed  Google Scholar 

  56. Chung YH, Tsai CK, Wang CC, Chen HM, Lu KY, Chiu H, et al. Early response monitoring following radiation therapy by using [(18)F]FDG and [(11)C]acetate PET in prostate cancer xenograft model with metabolomics corroboration. Molecules. 2017;22:1946.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of the Cancer Center, Genomic Medicine Core Laboratory, and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Linkou, for their invaluable help. We are also grateful to Jang-Hau Lian and Yi-Ping Liu for their assistance in data retrieval and processing.

Funding

Financial support by Chang Gung Medical Foundation in Taiwan: CMRPD1G0611 and CMRPD1H0661 for Dr CN Tsai, CORPG1G0021 and CMRPG1J0061 for Dr MC Yu and Ministry of Science and Technology: MOST 103-2314-B-182A-082-MY1-3 and MOST 106-2314-B-182A-113 for Dr MC Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CN., Yu, SC., Lee, CW. et al. SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo. Oncogene 39, 4695–4710 (2020). https://doi.org/10.1038/s41388-020-1319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1319-z

This article is cited by

Search

Quick links