Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational Therapeutics

The emerging role of PI3K inhibitors for solid tumour treatment and beyond

Abstract

Phosphoinositide 3-kinases (PI3Ks) play a central role in tumourigenesis with recurrent activating mutations of its p110α subunit (PIK3CA) identified in several tumours. Although several PI3K inhibitors are approved for haematological malignancies, only alpelisib was approved in solid tumours and for the treatment of PIK3CA-related overgrowth spectrum (PROS) syndrome. Traditional PI3K inhibitors inhibit both wild-type and mutant PI3K with almost equal potency, thus limiting their efficacy due to on-target toxicity. Since the initiation of phase I clinical trials investigating next generation allosteric mutant and isoform selective PIK3CA inhibitors, there has been a surge in interest in PIK3CA targeting in solid tumours. Preclinical characterisation of these compounds showed that maximal mutant protein inhibition fails to elicit metabolic and glucose homoeostasis dysregulation, one of the dose limiting toxicities of both selective and pan PI3K inhibitors. While extreme selectivity can be hypothesised to grant activity and safety advantage to these novel agents, on the other hand reduced benefit can be speculated for patients harbouring multiple or rare PIK3CA mutations. This review summarises the current understanding of PI3K alterations and the state-of-the-art treatment strategies in PI3K driven solid tumours, while also exploring the potential intrinsic and acquired resistance mechanisms to these agents, and the emerging role of mutant selective PIK3CA inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: (Top Panel) Inner pie-chart: frequency of PIK3CA gene alterations according to type (Missense mutations, Insertion/deletion mutations, Fusions, Amplifications, Mutations & amplifications and Miscellanea) in 10945 samples of the MSK-IMPACT Clinical Sequencing Cohort [3].
Fig. 2: A schematic representation of major class I PI3K signalling pathway.
Fig. 3: A schematic representation of most frequently observed PI3K resistance mechanisms.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554. https://doi.org/10.1126/science.1096502

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31:820.e3–32.e3. https://doi.org/10.1016/j.ccell.2017.04.013

    Article  CAS  Google Scholar 

  3. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13. https://doi.org/10.1038/nm.4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway. Nat Rev Clin Oncol. 2018;15:273–91. https://doi.org/10.1038/nrclinonc.2018.28

    Article  CAS  PubMed  Google Scholar 

  5. Petroni G, Buque A, Zitvogel L, Kroemer G, Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell. 2021;39:310–45. https://doi.org/10.1016/j.ccell.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  6. Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929–40. https://doi.org/10.1056/NEJMoa1813904

    Article  CAS  PubMed  Google Scholar 

  7. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A. 2014;164A:1713–33. https://doi.org/10.1002/ajmg.a.36552

    Article  CAS  PubMed  Google Scholar 

  8. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  9. Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, et al. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell. 2009;16:463–74. https://doi.org/10.1016/j.ccr.2009.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578:122–8. https://doi.org/10.1038/s41586-019-1907-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andre F, Ciruelos EM, Juric D, Loibl S, Campone M, Mayer IA, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol. 2021;32:208–17. https://doi.org/10.1016/j.annonc.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  12. Andre F, Hurvitz S, Fasolo A, Tseng LM, Jerusalem G, Wilks S, et al. Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2-overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. J Clin Oncol. 2016;34:2115–24. https://doi.org/10.1200/JCO.2015.63.9161

    Article  PubMed  Google Scholar 

  13. Mosele F, Stefanovska B, Lusque A, Tran Dien A, Garberis I, Droin N, et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol. 2020;31:377–86. https://doi.org/10.1016/j.annonc.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  14. Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19. https://doi.org/10.1056/NEJMoa1113216

    Article  CAS  PubMed  Google Scholar 

  15. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9. https://doi.org/10.1056/NEJMoa1109653

    Article  CAS  PubMed  Google Scholar 

  16. Ogino S, Nosho K, Kirkner GJ, Shima K, Irahara N, Kure S, et al. PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol. 2009;27:1477–84. https://doi.org/10.1200/JCO.2008.18.6544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62. https://doi.org/10.1016/S1470-2045(10)70130-3

    Article  CAS  PubMed  Google Scholar 

  18. Mao C, Yang ZY, Hu XF, Chen Q, Tang JL. PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol. 2012;23:1518–25. https://doi.org/10.1093/annonc/mdr464

    Article  CAS  PubMed  Google Scholar 

  19. Huang L, Liu Z, Deng D, Tan A, Liao M, Mo Z, et al. Anti-epidermal growth factor receptor monoclonal antibody-based therapy for metastatic colorectal cancer: a meta-analysis of the effect of PIK3CA mutations in KRAS wild-type patients. Arch Med Sci. 2014;10:1–9. https://doi.org/10.5114/aoms.2014.40728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44. https://doi.org/10.1038/nrd2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846. https://doi.org/10.1038/ncomms5846

    Article  CAS  PubMed  Google Scholar 

  22. Croessmann S, Sheehan JH, Lee KM, Sliwoski G, He J, Nagy R, et al. PIK3CA C2 domain deletions hyperactivate phosphoinositide 3-kinase (PI3K), generate oncogene dependence, and are exquisitely sensitive to PI3Kalpha inhibitors. Clin Cancer Res. 2018;24:1426–35. https://doi.org/10.1158/1078-0432.CCR-17-2141

    Article  CAS  PubMed  Google Scholar 

  23. Krop IE, Mayer IA, Ganju V, Dickler M, Johnston S, Morales S, et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17:811–21. https://doi.org/10.1016/S1470-2045(16)00106-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vuylsteke P, Huizing M, Petrakova K, Roylance R, Laing R, Chan S, et al. Pictilisib PI3Kinase inhibitor (a phosphatidylinositol 3-kinase [PI3K] inhibitor) plus paclitaxel for the treatment of hormone receptor-positive, HER2-negative, locally recurrent, or metastatic breast cancer: interim analysis of the multicentre, placebo-controlled, phase II randomised PEGGY study. Ann Oncol. 2016;27:2059–66. https://doi.org/10.1093/annonc/mdw320

    Article  CAS  PubMed  Google Scholar 

  25. Matulonis U, Vergote I, Backes F, Martin LP, McMeekin S, Birrer M, et al. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. Gynecol Oncol. 2015;136:246–53. https://doi.org/10.1016/j.ygyno.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  26. Levy B, Spira A, Becker D, Evans T, Schnadig I, Camidge DR, et al. A randomized, phase 2 trial of Docetaxel with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic non-small-cell lung cancer. J Thorac Oncol. 2014;9:1031–5. https://doi.org/10.1097/JTO.0000000000000183

    Article  CAS  PubMed  Google Scholar 

  27. Jimeno A, Bauman JE, Weissman C, Adkins D, Schnadig I, Beauregard P, et al. A randomized, phase 2 trial of docetaxel with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Oral Oncol. 2015;51:383–8. https://doi.org/10.1016/j.oraloncology.2014.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Leo A, Johnston S, Lee KS, Ciruelos E, Lonning PE, Janni W, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19:87–100. https://doi.org/10.1016/S1470-2045(17)30688-5

    Article  PubMed  Google Scholar 

  29. Baselga J, Im SA, Iwata H, Cortes J, De Laurentiis M, Jiang Z, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:904–16. https://doi.org/10.1016/S1470-2045(17)30376-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin M, Chan A, Dirix L, O’Shaughnessy J, Hegg R, Manikhas A, et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann Oncol. 2017;28:313–20. https://doi.org/10.1093/annonc/mdw562

    Article  CAS  PubMed  Google Scholar 

  31. Soulieres D, Faivre S, Mesia R, Remenar E, Li SH, Karpenko A, et al. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2017;18:323–35. https://doi.org/10.1016/S1470-2045(17)30064-5

    Article  CAS  PubMed  Google Scholar 

  32. Damodaran S, Zhao F, Deming DA, Mitchell EP, Wright JJ, Gray RJ, et al. Phase II study of copanlisib in patients with tumors with PIK3CA mutations: results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol Z1F. J Clin Oncol. 2022:40:1552–61. https://doi.org/10.1200/JCO.21.01648

  33. Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, et al. FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin Cancer Res. 2021;27:1842–9. https://doi.org/10.1158/1078-0432.CCR-20-3652

    Article  CAS  PubMed  Google Scholar 

  34. Toska E, Castel P, Chhangawala S, Arruabarrena-Aristorena A, Chan C, Hristidis VC, et al. PI3K inhibition activates SGK1 via a feedback loop to promote chromatin-based regulation of ER-dependent gene expression. Cell Rep. 2019;27:294.e5–306.e5. https://doi.org/10.1016/j.celrep.2019.02.111

    Article  CAS  Google Scholar 

  35. Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355:1324–30. https://doi.org/10.1126/science.aah6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A, et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med. 2015;7:283ra51. https://doi.org/10.1126/scitranslmed.aaa4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rugo HS, Lerebours F, Ciruelos E, Drullinsky P, Ruiz-Borrego M, Neven P, et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol. 2021;22:489–98. https://doi.org/10.1016/S1470-2045(21)00034-6

    Article  CAS  PubMed  Google Scholar 

  38. Wei X, Liu J, Zhao H, Zhang Y, Liu Q, Zou B, et al. 33O A phase I study to evaluate safety, pharmacokinetics (PK), and preliminary efficacy of CYH33, a phosphatidylinositol 3-kinase α (PI3Kα) inhibitor, in patients (pts) with advanced solid tumours. Ann Oncol. 2021;32:S14.

    Article  Google Scholar 

  39. Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76:2301–13. https://doi.org/10.1158/0008-5472.CAN-15-0728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bedard PL, Davies MA, Kopetz S, Juric D, Shapiro GI, Luke JJ, et al. First-in-human trial of the PI3Kbeta-selective inhibitor SAR260301 in patients with advanced solid tumors. Cancer. 2018;124:315–24. https://doi.org/10.1002/cncr.31044

    Article  CAS  PubMed  Google Scholar 

  41. Jung M, Kim C, Kim H, Lee C, Lee H, Bae W, et al. SO-10 An open-label, multi-centre, phase Ib/II study of PI3Kβ selective inhibitor GSK2636771 administered in combination with paclitaxel in patients with advanced gastric cancer having alterations in PI3K/Akt pathway. Ann Oncol. 2021;32:S206 https://doi.org/10.1016/j.annonc.2021.05.034

    Article  Google Scholar 

  42. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11:329–41. https://doi.org/10.1038/nrm2882

    Article  CAS  PubMed  Google Scholar 

  43. Hamilton E, Lee A, Swart R, Newton G, O’Connell B, Roberts J, et al. Abstract PS11-32: Mario-3 phase II study safety run-in evaluating a novel triplet combination of eganelisib (formerly IPI-549), atezolizumab (atezo), and nab-paclitaxel (nab-pac) as first-line (1L) therapy for locally advanced or metastatic triple-negative breast cancer (TNBC). Cancer Res. 2021;81:PS11-32–PS11-32. https://doi.org/10.1158/1538-7445.Sabcs20-ps11-32

    Article  Google Scholar 

  44. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007. https://doi.org/10.1056/NEJMoa1315226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Sanabria Bohorquez SM, et al. Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors. Cancer Discov. 2017;7:704–15. https://doi.org/10.1158/2159-8290.CD-16-1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dent S, Cortes J, Im YH, Dieras V, Harbeck N, Krop IE, et al. Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: the SANDPIPER trial. Ann Oncol. 2021;32:197–207. https://doi.org/10.1016/j.annonc.2020.10.596

    Article  CAS  PubMed  Google Scholar 

  47. Vasan N, Razavi P, Johnson JL, Shao H, Reznik E, Smith ML, et al. Double PIK3CA mutations in cis enhance PI3Kα oncogene activation and sensitivity to PI3Kα inhibitors in breast cancer. Ann Oncol. 2019;30:iii1 https://doi.org/10.1093/annonc/mdz095

    Article  Google Scholar 

  48. Buckbinder L, St. Jean DJ, Tieu T, Wang W, Kryukov G, Jonsson P, et al. Abstract LB194: discovery and characterization of a mutant selective PI3Kα H1047X inhibitor with a best-in-class profile. Cancer Res. 2022;82:LB194. https://doi.org/10.1158/1538-7445.Am2022-lb194

    Article  Google Scholar 

  49. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81. https://doi.org/10.1056/NEJMoa066838

    Article  CAS  PubMed  Google Scholar 

  50. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–56. https://doi.org/10.1016/S0140-6736(08)61039-9

    Article  CAS  PubMed  Google Scholar 

  51. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23. https://doi.org/10.1056/NEJMoa1009290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387:968–77. https://doi.org/10.1016/S0140-6736(15)00817-X

    Article  CAS  PubMed  Google Scholar 

  53. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol. 2020;38:423–33. https://doi.org/10.1200/JCO.19.00368

    Article  CAS  PubMed  Google Scholar 

  54. Sweeney C, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S, et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2021;398:131–42. https://doi.org/10.1016/S0140-6736(21)00580-8

    Article  CAS  PubMed  Google Scholar 

  55. Razavi P, Dickler MN, Shah PD, Toy W, Brown DN, Won HH, et al. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat Cancer. 2020;1:382–93. https://doi.org/10.1038/s43018-020-0047-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518:240–4. https://doi.org/10.1038/nature13948

    Article  CAS  PubMed  Google Scholar 

  57. Curigliano G, Martin M, Jhaveri K, Beck JT, Tortora G, Fazio N, et al. Alpelisib in combination with everolimus +/− exemestane in solid tumours: phase Ib randomised, open-label, multicentre study. Eur J Cancer. 2021;151:49–62. https://doi.org/10.1016/j.ejca.2021.03.042

    Article  CAS  PubMed  Google Scholar 

  58. Hyman DM, Tran B, Paz-Ares L, Machiels JP, Schellens JH, Bedard PL, et al. Combined PIK3CA and FGFR inhibition with alpelisib and infigratinib in patients with PIK3CA-mutant solid tumors, with or without FGFR alterations. JCO Precis Oncol. 2019;3:1–13. https://doi.org/10.1200/PO.19.00221

    Article  PubMed  Google Scholar 

  59. Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature. 2018;560:499–503. https://doi.org/10.1038/s41586-018-0343-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci. 2020;11:5855–65. https://doi.org/10.1039/d0sc01676d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Folgiero V, Di Carlo SE, Bon G, Spugnini EP, Di Benedetto A, Germoni S, et al. Inhibition of p85, the non-catalytic subunit of phosphatidylinositol 3-kinase, exerts potent antitumor activity in human breast cancer cells. Cell Death Dis. 2012;3:e440. https://doi.org/10.1038/cddis.2012.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sasso JM, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry. 2022. https://doi.org/10.1021/acs.biochem.2c00245

  63. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24. https://doi.org/10.1038/nrc3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CB conceptualised and supervised the study. All authors were involved in data curation, investigation, methodology, writing, reviewing, and editing. The final version was approved by all authors.

Corresponding author

Correspondence to Giuseppe Curigliano.

Ethics declarations

Competing interests

MR reports travelling funding for Sanofi. CP remunerated Consultant and/or Speaker for: Angelini Pharma, AstraZeneca, BMS, Eisai, General Electric, Ipsen, MSD; Protocol Steering Committee Member for: BMS, Eisai and MSD. VS reports research grants from Eli Lilly/Loxo Oncology, Blueprint Medicines Corporation, Turning Point Therapeutics, Boston Pharmaceuticals, and Helsinn Pharmaceuticals, and a grant and an advisory board/consultant positions with Eli Lilly/Loxo Oncology during the conduct of the study, as well as research grants from Roche/Genentech, Bayer, GlaxoSmithKline, Nanocarrier, Vegenics, Celgene, Northwest Biotherapeutics, Berg Health, Incyte, Fujifilm, D3, Pfizer, Multivir, Amgen, AbbVie, Alfasigma, Agensys, Boston Biomedical, IderaPharma, Inhibrx, Exelixis, Blueprint Medicines, Altum, Dragonfly Therapeutics, Takeda, National Comprehensive Cancer Network, NCI-Cancer Therapy Evaluation Program, The University of Texas MD Anderson Cancer Center, Turning Point Therapeutics, Boston Pharmaceuticals, Novartis, PharmaMar, Medimmune, advisory board/consultant positions with Helsinn, Incyte, QED Pharma, Daiichi Sankyo, Signant Health, Novartis, Relay Therapeutics, Pfizer, Roche, and Medimmune, travel funds from PharmaMar, Incyte, ASCO, and ESMO, and other support from Medscape outside the submitted work. GC received honoraria for speaker’s engagement: Roche, Seattle Genetics, Novartis, Lilly, Pfizer, Foundation Medicine, NanoString, Samsung, Celltrion, BMS, MSD; honoraria for providing consultancy: Roche, Seattle Genetics, NanoString; honoraria for participating in Advisory Board: Roche, Lilly, Pfizer, Foundation Medicine, Samsung, Celltrion, Mylan; honoraria for writing engagement: Novartis, BMS; honoraria for participation in Ellipsis Scientific Affairs Group; Institutional research funding for conducting phase I and II clinical trials: Pfizer, Roche, Novartis, Sanofi, Celgene, Servier, Orion, AstraZeneca, Seattle Genetics, AbbVie, Tesaro, BMS, Merck Serono, Merck Sharp Dome, Janssen-Cilag, Philogen, Bayer, Medivation, Medimmune. All remaining authors have declared no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, C., Repetto, M., Anand, S. et al. The emerging role of PI3K inhibitors for solid tumour treatment and beyond. Br J Cancer 128, 2150–2162 (2023). https://doi.org/10.1038/s41416-023-02221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02221-1

This article is cited by

Search

Quick links