Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project

Abstract

Background

The evidence linking ambient air pollution to bladder cancer is limited and mixed.

Methods

We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders.

Results

During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93–1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99–1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00–1.16 per 10 ng/m3).

Conclusions

We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exposure distribution (corresponding values shown in Table S1).

Similar content being viewed by others

Data availability

The exposure maps are available on request from Dr Kees de Hoogh (c.dehoogh@swisstph.ch). The cohort data could only be pooled for the ELAPSE framework but is not available for sharing due to strict national data protection regulations and the General Data Protection Regulation of the European Union. The ELAPSE study protocol is available at http://www.elapseproject.eu/. A detailed statistical analysis plan is available on reasonable request from the corresponding author (j.chen1@uu.nl).

References

  1. Loomis D, Grosse Y, Lauby-Secretan B, Ghissassi FE, Bouvard V, Benbrahim-Tallaa L, et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013;14:1262–3.

    Article  CAS  PubMed  Google Scholar 

  2. Collaborators GDaI, Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–22.

    Article  Google Scholar 

  3. Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8:444–72.

    Article  CAS  PubMed  Google Scholar 

  4. Boffetta P, Silverman DT. A meta-analysis of bladder cancer and diesel exhaust exposure. Epidemiology. 2001;12:125–30.

  5. Kogevinas M, Mannetje AT, Cordier S, Ranft U, González CA, Vineis P, et al. Occupation and bladder cancer among men in Western Europe. Cancer Causes Control. 2003;14:907–14.

    Article  PubMed  Google Scholar 

  6. Silverman DT, Hoover RN, Mason TJ, Swanson GM. Motor exhaust-related occupations and bladder cancer. Cancer Res. 1986;46:2113–6.

    CAS  PubMed  Google Scholar 

  7. Turner MC, Krewski D, Diver WR, Pope CA 3rd, Burnett RT, Jerrett M, et al. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environ Health Perspect. 2017;125:087013.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coleman NC, Burnett RT, Higbee JD, Lefler JS, Merrill RM, Ezzati M, et al. Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US adults. Cancer Causes Control. 2020;31:767–76.

    Article  PubMed  Google Scholar 

  9. Turner MC, Gracia-Lavedan E, Cirac M, Castano-Vinyals G, Malats N, Tardon A, et al. Ambient air pollution and incident bladder cancer risk: Updated analysis of the Spanish Bladder Cancer Study. Int J Cancer. 2019;145:894–900.

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen M, Stafoggia M, Weinmayr G, Andersen ZJ, Galassi C, Sommar J, et al. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts. Eur Urol Focus. 2018;4:113–20.

    Article  PubMed  Google Scholar 

  11. Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sørensen M, et al. Air pollution from traffic and cancer incidence: a Danish cohort study. Environ Health. 2011;10:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen G, Levy I, Yuval, Kark JD, Levin N, Witberg G, et al. Chronic exposure to traffic-related air pollution and cancer incidence among 10,000 patients undergoing percutaneous coronary interventions: a historical prospective study. Eur J Prev Cardiol. 2018;25:659–70.

    Article  PubMed  Google Scholar 

  13. Visser O, van Wijnen JH, van Leeuwen FE. Residential traffic density and cancer incidence in Amsterdam, 1989-97. Cancer Causes Control. 2004;15:331–9.

    Article  PubMed  Google Scholar 

  14. Castano-Vinyals G, Cantor KP, Malats N, Tardon A, Garcia-Closas R, Serra C, et al. Air pollution and risk of urinary bladder cancer in a case-control study in Spain. Occup Environ Med. 2008;65:56–60.

    Article  CAS  PubMed  Google Scholar 

  15. Ancona C, Badaloni C, Mataloni F, Bolignano A, Bucci S, Cesaroni G, et al. Mortality and morbidity in a population exposed to multiple sources of air pollution: A retrospective cohort study using air dispersion models. Environ Res. 2015;137:467–74.

    Article  CAS  PubMed  Google Scholar 

  16. Brunekreef B, Strak M, Chen J, Andersen ZJ, Atkinson R, Bauwelinck M, et al. Mortality and Morbidity Effects of Long-Term Exposure To Low-Level PM2.5, Black Carbon, NO2 and O3: an analysis of European Cohorts. Research Report (Health Effects Institute). 2021.

  17. Chen J, Rodopoulou S, de Hoogh K, Strak M, Andersen ZJ, Atkinson R, et al. Long-term exposure to fine particle elemental components and natural and cause-specific mortality-a pooled analysis of eight European Cohorts within the ELAPSE Project. Environ Health Perspect. 2021;129:47009.

    Article  CAS  PubMed  Google Scholar 

  18. Hvidtfeldt UA, Chen J, Andersen ZJ, Atkinson R, Bauwelinck M, Bellander T, et al. Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort. Environ Res. 2021;193:110568.

  19. Eriksson AK, Ekbom A, Granath F, Hilding A, Efendic S, Östenson CG. Psychological distress and risk of pre‐diabetes and Type 2 diabetes in a prospective study of Swedish middle‐aged men and women. Diabet Med. 2008;25:834–42.

    Article  PubMed  Google Scholar 

  20. Lagergren M, Fratiglioni L, Hallberg IR, Berglund J, Elmståhl S, Hagberg B, et al. A longitudinal study integrating population, care and social services data. The Swedish National study on Aging and Care (SNAC). Aging Clin Exp Res. 2004;16:158–68.

    Article  PubMed  Google Scholar 

  21. Magnusson PK, Almqvist C, Rahman I, Ganna A, Viktorin A, Walum H, et al. The Swedish Twin Registry: establishment of a biobank and other recent developments. Twin Res Hum Genet. 2013;16:317–29.

    Article  PubMed  Google Scholar 

  22. Wändell P-E, Wajngot A, De Faire U, Hellénius M-L. Increased prevalence of diabetes among immigrants from non-European countries in 60-year-old men and women in Sweden. Diabetes Metab. 2007;33:30–6.

    Article  PubMed  Google Scholar 

  23. Tjønneland A, Olsen A, Boll K, Stripp C, Christensen J, Engholm G, et al. Study design, exposure variables, and socioeconomic determinants of participation in diet, cancer and health: a population-based prospective cohort study of 57,053 men and women in Denmark. Scand J Public Health. 2007;35:432–41.

    Article  PubMed  Google Scholar 

  24. Hundrup YA, Simonsen MK, Jørgensen T, Obel EB. Cohort profile: the Danish nurse cohort. Int J Epidemiol. 2012;41:1241–7.

    Article  PubMed  Google Scholar 

  25. Beulens JW, Monninkhof EM, Verschuren WM, Schouw YTVD, Smit J, Ocke MC, et al. Cohort profile: the EPIC-NL study. Int J Epidemiol. 2010;39:1170–8.

    Article  PubMed  Google Scholar 

  26. Clavel-Chapelon F. Group ENS. Cohort profile: the French E3N cohort study. Int J Epidemiol. 2015;44:801–9.

    Article  PubMed  Google Scholar 

  27. Ulmer H, Kelleher C, Fitz‐Simon N, Diem G, Concin H. Secular trends in cardiovascular risk factors: an age‐period cohort analysis of 6 98 954 health examinations in 1 81 350 Austrian men and women. J Intern Med. 2007;261:566–76.

    Article  CAS  PubMed  Google Scholar 

  28. de Hoogh K, Wang M, Adam M, Badaloni C, Beelen R, Birk M, et al. Development of land use regression models for particle composition in twenty study areas in Europe. Environ Sci Technol. 2013;47:5778–86.

    Article  PubMed  CAS  Google Scholar 

  29. Tsai MY, Hoek G, Eeftens M, de Hoogh K, Beelen R, Beregszaszi T, et al. Spatial variation of PM elemental composition between and within 20 European study areas-Results of the ESCAPE project. Environ Int. 2015;84:181–92.

    Article  CAS  PubMed  Google Scholar 

  30. De Hoogh K, Chen J, Gulliver J, Hoffmann B, Hertel O, Ketzel M, et al. Spatial PM2. 5, NO2, O3 and BC models for Western Europe–Evaluation of spatiotemporal stability. Environ Int. 2018;120:81–92.

    Article  PubMed  CAS  Google Scholar 

  31. Chen J, de Hoogh K, Gulliver J, Hoffmann B, Hertel O, Ketzel M, et al. Development of Europe-Wide models for particle elemental composition using supervised linear regression and random forest. Environ Sci Technol. 2020;54:15698–709.

  32. Brandt J, Silver JD, Frohn LM, Geels C, Gross A, Hansen AB, et al. An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution. Atmos Environ. 2012;53:156–76.

    Article  CAS  Google Scholar 

  33. Samoli E, Rodopoulou S, Hvidtfeldt UA, Wolf K, Stafoggia M, Brunekreef B, et al. Modeling multi-level survival data in multi-center epidemiological cohort studies: Applications from the ELAPSE project. Environ Int. 2021;147:106371.

    Article  CAS  PubMed  Google Scholar 

  34. Hvidtfeldt UA, Severi G, Andersen ZJ, Atkinson R, Bauwelinck M, Bellander T, et al. Long-term low-level ambient air pollution exposure and risk of lung cancer—a pooled analysis of 7 European cohorts. Environ Int. 2021;146:106249.

    Article  CAS  PubMed  Google Scholar 

  35. Beelen R, Hoek G, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, et al. Natural-cause mortality and long-term exposure to particle components: an analysis of 19 European cohorts within the multi-center ESCAPE project. Environ Health Perspect. 2015;123:525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Strak M, Weinmayr G, Rodopoulou S, Chen J, de Hoogh K, Andersen ZJ, et al. Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ. 2021;374:n1904.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andersen ZJ, Stafoggia M, Weinmayr G, Pedersen M, Galassi C, Jorgensen JT, et al. Long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in 15 European Cohorts within the ESCAPE Project. Environ Health Perspect. 2017;125:107005.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen J, de Hoogh K, Gulliver J, Hoffmann B, Hertel O, Ketzel M, et al. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ Int. 2019;130:104934.

    Article  CAS  PubMed  Google Scholar 

  39. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  40. Wong CM, Tsang H, Lai HK, Thomas GN, Lam KB, Chan KP, et al. Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiol Biomark Prev. 2016;25:839–45.

    Article  CAS  Google Scholar 

  41. Brown T, Slack R, Rushton L.British Occupational Cancer Burden Study Group Occupational cancer in Britain. Urinary tract cancers: bladder and kidney. Br J Cancer. 2012;107:S76–84.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicological Sci. 2015;145:5–15.

    Article  CAS  Google Scholar 

  43. Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, 3rd, et al. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin. 2020;70:460–79.

  44. Latifovic L, Villeneuve PJ, Parent ME, Johnson KC, Kachuri L, Canadian Cancer Registries Epidemiology G, et al. Bladder cancer and occupational exposure to diesel and gasoline engine emissions among Canadian men. Cancer Med. 2015;4:1948–62.

  45. Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 2012;13:663–4.

    Article  PubMed  Google Scholar 

  46. Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, et al. Source apportionment of particulate matter in Europe: A review of methods and results. J Aerosol Sci. 2008;39:827–49.

    Article  CAS  Google Scholar 

  47. Thurston GD, Burnett RT, Turner MC, Shi Y, Krewski D, Lall R, et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. Fine particle air pollution. Environ Health Perspect. 2016;124:785–94.

    Article  CAS  PubMed  Google Scholar 

  48. Collarile P, Bidoli E, Barbone F, Zanier L, Del Zotto S, Fuser S, et al. Residence in proximity of a coal-oil-fired thermal power plant and risk of lung and bladder cancer in North-Eastern Italy. A Population-Based Study: 1995-2009. Int J Environ Res Public Health. 2017;14:860.

  49. de Hoogh K, Gulliver J, Donkelaar AV, Martin RV, Marshall JD, Bechle MJ, et al. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environ Res. 2016;151:1–10.

    Article  PubMed  CAS  Google Scholar 

  50. Eeftens M, Beelen R, Fischer P, Brunekreef B, Meliefste K, Hoek G. Stability of measured and modelled spatial contrasts in NO2 over time. Occup Environ Med. 2011;68:765–70.

    Article  CAS  PubMed  Google Scholar 

  51. Cesaroni G, Porta D, Badaloni C, Stafoggia M, Eeftens M, Meliefste K, et al. Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. Environ Health. 2012;11:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gulliver J, de Hoogh K, Hansell A, Vienneau D. Development and back-extrapolation of NO2 land use regression models for historic exposure assessment in Great Britain. Environ Sci Technol. 2013;47:7804–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marjan Tewis for the data management tasks in creating the pooled cohort database.

Funding

The research described in this article was conducted under contract to the Health Effects Institute (HEI), an organisation jointly funded by the United States Environmental Protection Agency (EPA) (Assistance Award No. R-82811201) and certain motor vehicle and engine manufacturers. The contents of this article do not necessarily reflect the views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and engine manufacturers.

Author information

Authors and Affiliations

Authors

Contributions

GH, ORN and JC: study conceptualisation and design; GH and BB: principal investigators of the ELAPSE project; JC: statistical analysis and manuscript writing; GH, ORN and BB: supervision, manuscript review and editing; GH, BB, JC and MS: ELAPSE project coordination, preparing pooled data for analyses, and providing support with the access to pooled cohort data; SR, ES and KK: contribution of statistical analyses strategy and scripts for the statistical analyses; KdH, JC and GH: exposure assessment. All authors contributed to the interpretation of the results. All authors read and revised the manuscript for the important intellectual content and approved the final draft of the manuscript.

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study involved no contact with members of the study population and the published results does not allow identification of individuals. The analyses were undertaken in a secure IT environment where no individual level data can be retrieved. All included cohort studies were approved by the medical ethics committees in their respective countries.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Rodopoulou, S., Strak, M. et al. Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project. Br J Cancer 126, 1499–1507 (2022). https://doi.org/10.1038/s41416-022-01735-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01735-4

This article is cited by

Search

Quick links