Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

MYB interacts with androgen receptor, sustains its ligand-independent activation and promotes castration resistance in prostate cancer

Abstract

Background

Aberrant activation of androgen receptor signalling following castration therapy is a common clinical observation in prostate cancer (PCa). Earlier, we demonstrated the role of MYB overexpression in androgen-depletion resistance and PCa aggressiveness. Here, we investigated MYB-androgen receptor (AR) crosstalk and its functional significance.

Methods

Interaction and co-localization of MYB and AR were examined by co-immunoprecipitation and immunofluorescence analyses, respectively. Protein levels were measured by immunoblot analysis and enzyme-linked immunosorbent assay. The role of MYB in ligand-independent AR transcriptional activity and combinatorial gene regulation was studied by promoter-reporter and chromatin immunoprecipitation assays. The functional significance of MYB in castration resistance was determined using an orthotopic mouse model.

Results

MYB and AR interact and co-localize in the PCa cells. MYB-overexpressing PCa cells retain AR in the nucleus even when cultured under androgen-deprived conditions. AR transcriptional activity is also sustained in MYB-overexpressing cells in the absence of androgens. MYB binds and promotes AR occupancy to the KLK3 promoter. MYB-overexpressing PCa cells exhibit greater tumorigenicity when implanted orthotopically and quickly regain growth following castration leading to shorter mice survival, compared to those carrying low-MYB-expressing prostate tumours.

Conclusions

Our findings reveal a novel MYB-AR crosstalk in PCa and establish its role in castration resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MYB and AR interact and co-localize with each other in prostate cancer cells.
Fig. 2: MYB-overexpressing cells are able to retain AR in the nucleus under androgen-deprived conditions.
Fig. 3: Transcriptional activity of AR is increased in MYB-expressing prostate cancer cells and sustained under androgen-depleted conditions.
Fig. 4: MYB facilitates castration-resistant growth of PCa cells in the orthotopic mouse model.
Fig. 5: Mice carrying MYB-overexpressing tumours have poorer survival.

Similar content being viewed by others

Data availability

We confirm that all the data in this manuscript is original and we have access to the raw data files.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Martinez-Breijo S, Chantada-Abal V, Aller-Rodriguez M, Bohorquez-Cruz M, Sacristan-Lista F, Ponce-Diaz J, et al. Castration resistance mechanisms in prostate cancer. Arch Esp Urol. 2018;71:628–38.

    PubMed  Google Scholar 

  3. Kita Y, Goto T, Akamatsu S, Yamasaki T, Inoue T, Ogawa O, et al. Castration-resistant prostate cancer refractory to second-generation androgen receptor axis-targeted agents: opportunities and challenges. Cancers. 2018;10:345. https://doi.org/10.3390/cancers10100345.

    Article  CAS  PubMed Central  Google Scholar 

  4. Saranyutanon S, Deshmukh SK, Dasgupta S, Pai S, Singh S, Singh AP. Cellular and molecular progression of prostate cancer: models for basic and preclinical research. Cancers. 2020;12:2651. https://doi.org/10.3390/cancers12092651.

    Article  CAS  PubMed Central  Google Scholar 

  5. Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Nava Rodrigues D, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019;129:192–208.

    Article  CAS  PubMed  Google Scholar 

  6. Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinogen. 2011;10:20.

    Article  CAS  Google Scholar 

  7. Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci. 2011;16:1109–31.

    Article  CAS  PubMed Central  Google Scholar 

  8. Baker SJ, Ma’ayan A, Lieu YK, John P, Reddy MV, Chen EY, et al. B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor cell development. Proc Natl Acad Sci USA. 2014;111:3122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, et al. c-Myb enhances breast cancer invasion and metastasis through the Wnt/beta-catenin/Axin2 pathway. Cancer Res. 2016;76:3364–75.

    Article  CAS  PubMed  Google Scholar 

  10. Tichy M, Knopfova L, Jarkovsky J, Pekarcikova L, Veverkova L, Vlcek P, et al. Overexpression of c-Myb is associated with suppression of distant metastases in colorectal carcinoma. Tumour Biol. 2016;37:10723–9.

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava SK, Bhardwaj A, Singh S, Arora S, McClellan S, Grizzle WE. et al. Myb overexpression overrides androgen depletion-induced cell cycle arrest and apoptosis in prostate cancer cells, and confers aggressive malignant traits: potential role in castration resistance. Carcinogenesis. 2012;33:1149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edwards J, Krishna NS, Witton CJ, Bartlett JM. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res. 2003;9:5271–81.

    CAS  PubMed  Google Scholar 

  13. Miree O, Srivastava SK, Khan MA, Sameeta F, Acharya S, Ndetan H. et al. Clinicopathologic significance and race-specific prognostic association of MYB overexpression in ovarian cancer. Sci Rep. 2021;11:12901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hijiya N, Zhang J, Ratajczak MZ, Kant JA, DeRiel K, Herlyn M, et al. Biologic and therapeutic significance of MYB expression in human melanoma. Proc Natl Acad Sci USA. 1994;91:4499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA. 2009;106:18740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson MA, Rosenthal MA, Ellis SL, Friend AJ, Zorbas MI, Whitehead RH, et al. c-Myb down-regulation is associated with human colon cell differentiation, apoptosis, and decreased Bcl-2 expression. Cancer Res. 1998;58:5168–75.

    CAS  PubMed  Google Scholar 

  17. Bhardwaj A, Srivastava SK, Singh S, Tyagi N, Arora S, Carter JE, et al. MYB Promotes desmoplasia in pancreatic cancer through direct transcriptional up-regulation and cooperative action of sonic hedgehog and adrenomedullin. J Biol Chem. 2016;291:16263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Azim S, Zubair H, Srivastava SK, Bhardwaj A, Zubair A, Ahmad A, et al. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. Sci Rep. 2016;6:28446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srivastava SK, Bhardwaj A, Arora S, Singh S, Azim S, Tyagi N, et al. MYB is a novel regulator of pancreatic tumour growth and metastasis. Br J Cancer. 2015;113:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quintana AM, Liu F, O’Rourke JP, Ness SA. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer. 2011;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel GK, Khan MA, Bhardwaj A, Srivastava SK, Zubair H, Patton MC, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer. 2017;116:609–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, Andrews J. et al. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget. 2014;5:11490–500.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Khan MA, Srivastava SK, Zubair H, Patel GK, Arora S, Khushman M, et al. Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. J Biol Chem. 2020;295:8413–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23:35–47.

    Article  CAS  PubMed  Google Scholar 

  25. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994;54:2577–81.

    CAS  PubMed  Google Scholar 

  26. Bhardwaj A, Singh S, Srivastava SK, Honkanen RE, Reed E, Singh AP. Modulation of protein phosphatase 2A activity alters androgen-independent growth of prostate cancer cells: therapeutic implications. Mol Cancer Ther. 2011;10:720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, et al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: current and future clinical implications. Crit Rev Oncol Hematol. 2021;157:103185.

    Article  PubMed  Google Scholar 

  28. Merseburger AS, Bellmunt J, Jenkins C, Parker C, Fitzpatrick JM. European Treatment Practices G. Perspectives on treatment of metastatic castration-resistant prostate cancer. Oncologist. 2013;18:558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A’Hern R, et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009;69:2912–8.

    Article  CAS  PubMed  Google Scholar 

  30. Reyes EE, VanderWeele DJ, Isikbay M, Duggan R, Campanile A, Stadler WM, et al. Quantitative characterization of androgen receptor protein expression and cellular localization in circulating tumor cells from patients with metastatic castration-resistant prostate cancer. J Transl Med. 2014;12:313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen T, Wang LH, Farrar WL. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 2000;60:2132–5.

    CAS  PubMed  Google Scholar 

  32. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993;7:1541–50.

    CAS  PubMed  Google Scholar 

  33. Schroder FH. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur Urol. 2008;53:1129–37.

    Article  CAS  PubMed  Google Scholar 

  34. Lang G, White JR, Argent-Katwala MJ, Allinson CG, Weston K. Myb proteins regulate the expression of diverse target genes. Oncogene. 2005;24:1375–84.

    Article  CAS  PubMed  Google Scholar 

  35. Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ, Ishii S. Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA. 1989;86:5758–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weston K, Bishop JM. Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb. Cell. 1989;58:85–93.

    Article  CAS  PubMed  Google Scholar 

  37. Ness SA. Myb binding proteins: regulators and cohorts in transformation. Oncogene. 1999;18:3039–46.

    Article  CAS  PubMed  Google Scholar 

  38. Kaspar P, Dvorakova M, Kralova J, Pajer P, Kozmik Z, Dvorak M. Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. J Biol Chem. 1999;274:14422–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36:3–23.

    Article  CAS  PubMed  Google Scholar 

  40. Masoodi KZ, Xu Y, Dar JA, Eisermann K, Pascal LE, Parrinello E, et al. Inhibition of androgen receptor nuclear localization and castration-resistant prostate tumor growth by pyrroloimidazole-based small molecules. Mol Cancer Ther. 2017;16:2120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gan L, Chen S, Wang Y, Watahiki A, Bohrer L, Sun Z, et al. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer. Cancer Res. 2009;69:8386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018;1:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC. et al. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate. 2018;78:1140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li L, Chang W, Yang G, Ren C, Park S, Karantanos T, et al. Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci Signal. 2014;7:ra47.

    PubMed  PubMed Central  Google Scholar 

  45. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155:1309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarvaiya PJ, Schwartz JR, Geng CD, Vedeckis WV. c-Myb interacts with the glucocorticoid receptor and regulates its level in pre-B-acute lymphoblastic leukemia cells. Mol Cell Endocrinol. 2012;361:124–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson TC, Li L. New targets for resistant prostate cancer. Oncotarget. 2014;5:8816–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Todorova K, Metodiev MV, Metodieva G, Zasheva D, Mincheff M, Hayrabedyan S. miR-204 is dysregulated in metastatic prostate cancer in vitro. Mol Carcinogen. 2016;55:131–47.

    Article  CAS  Google Scholar 

  49. Bhardwaj A, Singh S, Srivastava SK, Arora S, Hyde SJ, Andrews J, et al. Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model. Br J Cancer. 2014;110:2000–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mansinho A, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets and treatment. Adv Exp Med Biol. 2018;1096:117–33.

    Article  CAS  PubMed  Google Scholar 

  51. Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M, et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 2011;107:1918–22.

    Article  PubMed  Google Scholar 

  52. Pezaro C, Woo HH, Davis ID. Prostate cancer: measuring PSA. Intern Med J. 2014;44:433–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of veterinarian and vivarium staff in our animal studies.

Funding information

We would like to acknowledge the funding from NIH/NCI [R01CA224306, U01CA185490 (to APS) and R01CA204801, R01CA231925 (to SS)] and USAMCI (to APS and SS).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: APS, SKS, MAK, SA, HZ and SS; development of methodology: APS, SKS, MAK, SA, HZ and SS; experiment and data generation: SKS, MAK, SA, HZ, SKD, GKP and JA; analysis and interpretation of data: APS, SKS, MAK, SA, HZ, SKD, JA, BW and JEC; writing original draft: SKS and APS; writing/reviewing and editing: MAK, APS, SKS, SA, SKD, HZ, GKP and JA; administrative and study supervision: APS and SS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ajay Pratap Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study involved no human subjects. Only the de-identified and archived human prostate cancer tissues were used under an exempt (category 4) protocol as determined by the University of South Alabama Institutional Review Board.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S.K., Khan, M.A., Anand, S. et al. MYB interacts with androgen receptor, sustains its ligand-independent activation and promotes castration resistance in prostate cancer. Br J Cancer 126, 1205–1214 (2022). https://doi.org/10.1038/s41416-021-01641-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01641-1

This article is cited by

Search

Quick links