Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allogeneic hematopoietic cell transplantation for acute myeloid leukemia with hyperdiploid complex karyotype

Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) remains the best consolidation strategy for acute myeloid leukemia (AML) with complex karyotype (CK). However, CK is a heterogenous and highly diverse entity. Numerical abnormalities have been associated with a controversial prognosis and AML with only multiple numerical abnormalities known as pure hyperdiploid karyotype (HDK) may have a distinct prognosis after allo-HCT compared to non-pure HDK CK AML. A total of 236 patients were identified within the EBMT registry as having HDK comprising 95 pure (pHDK) and 141 with other cytogenetic abnormalities (HDK+). The 2-year probability of leukemia-free survival (LFS) was 50% for pHDK and 31% for HDK+ (p = 0.003). The 2-year probability of overall survival (OS) was 57% for pHDK and 36% for HDK+ (p = 0.007). The 2-year cumulative incidence of relapse (RI) was 22% for pHDK and 44% for HDK+ (p = 0.001). The 2-year probability of graft-versus-host disease (GvHD)-free and relapse-free survival (GRFS) was 36% for pHDK and 21% for HDK+ (p = 0.01). On multivariate analysis, pHDK remained associated with significantly better LFS, OS and GRFS and lower RI (all p-values <0.004). pHDK AML constitutes probably a distinct cytogenetic entity from HDK+ or other non-hyperdiploid CK AML with better outcomes after allo-HCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relapse Incidence (RI), Leukemia-free survival (LFS), non-relapse mortality (NRM) and overall survival (OS) by cytogenetic groups.

Similar content being viewed by others

Data availability

The datasets analyzed during the current study have been generated from ProMISe (Project Manager Internet Server), the international database coordinated by EBMT.

References

  1. Cornelissen JJ, van Putten WL, Verdonck LF, Theobald M, Jacky E, Daenen SM, et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood. 2007;109:3658–66. https://doi.org/10.1182/blood-2006-06-025627.

    Article  CAS  PubMed  Google Scholar 

  2. Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301:2349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74. https://doi.org/10.1182/blood-2009-07-235358.

    Article  CAS  PubMed  Google Scholar 

  4. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52. https://doi.org/10.1056/NEJMra1406184.

    Article  CAS  PubMed  Google Scholar 

  5. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116:354–65. https://doi.org/10.1182/blood-2009-11-254441.

    Article  CAS  PubMed  Google Scholar 

  6. Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127:29–41. https://doi.org/10.1182/blood-2015-07-604496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer. 2005;43:227–38. https://doi.org/10.1002/gcc.20193.

    Article  CAS  PubMed  Google Scholar 

  8. Baron F, Labopin M, Niederwieser D, Vigouroux S, Cornelissen JJ, Malm C, et al. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European group for blood and marrow transplantation. Leukemia. 2012;26:2462–8. https://doi.org/10.1038/leu.2012.135.

    Article  CAS  PubMed  Google Scholar 

  9. Schlenk RF, Dohner K, Mack S, Stoppel M, Kiraly F, Gotze K, et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acutemyeloid leukemia: German-Austrian trial AMLHD98A. J Clin Oncol. 2010;28:4642–8. https://doi.org/10.1200/JCO.2010.28.6856.

    Article  PubMed  Google Scholar 

  10. Stelljes M, Beelen DW, Braess J, Sauerland MC, Heinecke A, Berning B, et al. Allogeneic transplantation as post-remission therapy for cytogenetically high-risk acute myeloid leukemia: landmark analysis from a single prospective multicenter trial. Haematologica. 2011;96:972–9. https://doi.org/10.3324/haematol.2011.041004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Versluis J, Hazenberg CL, Passweg JR, van Putten WL, Maertens J, Biemond BJ, et al. Post-remission treatment with allogeneic stem cell transplantation in patients aged 60 years and older with acute myeloid leukaemia: a time-dependent analysis. Lancet Haematol. 2015;2:e427–436. https://doi.org/10.1016/S2352-3026(15)00148-9.

    Article  PubMed  Google Scholar 

  12. Bowen D, Groves MJ, Burnett AK, Patel Y, Allen C, Green C, et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009;23:203–6. https://doi.org/10.1038/leu.2008.173.

    Article  CAS  PubMed  Google Scholar 

  13. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The medical research council adult and children’s leukaemia working parties. Blood. 1998;92:2322–33.

    Article  CAS  PubMed  Google Scholar 

  14. Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26:4791–7. https://doi.org/10.1200/JCO.2008.16.0259.

    Article  PubMed  Google Scholar 

  15. Haferlach C, Alpermann T, Schnittger S, Kern W, Chromik J, Schmid C, et al. Prognostic value of monosomal karyotype in comparison to complex aberrant karyotype in acute myeloid leukemia: a study on 824 cases with aberrant karyotype. Blood. 2012;119:2122–5. https://doi.org/10.1182/blood-2011-10-385781.

    Article  CAS  PubMed  Google Scholar 

  16. Poire X, Labopin M, Cornelissen JJ, Volin L, Richard Espiga C, Veelken JH, et al. Outcome of conditioning intensity in acute myeloid leukemia with monosomal karyotype in patients over 45 year-old: a study from the acute leukemia working party (ALWP) of the European group of blood and marrow transplantation (EBMT). Am J Hematol. 2015;90:719–24. https://doi.org/10.1002/ajh.24069.

    Article  PubMed  Google Scholar 

  17. Poire X, Labopin M, Polge E, Forcade E, Ganser A, Volin L, et al. Allogeneic stem cell transplantation using HLA-matched donors for acute myeloid leukemia with deletion 5q or monosomy 5: a study from the Acute Leukemia Working Party of the EBMT. Haematologica. 2020;105:414–23. https://doi.org/10.3324/haematol.2019.216168.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Poire X, Labopin M, Polge E, Volin L, Finke J, Ganser A, et al. The impact of concomitant cytogenetic abnormalities on acute myeloid leukemia with monosomy 7 or deletion 7q after HLA-matched allogeneic stem cell transplantation. Am J Hematol. 2020;95:282–94. https://doi.org/10.1002/ajh.25714.

    Article  CAS  PubMed  Google Scholar 

  19. Chilton L, Hills RK, Harrison CJ, Burnett AK, Grimwade D, Moorman AV. Hyperdiploidy with 49–65 chromosomes represents a heterogeneous cytogenetic subgroup of acute myeloid leukemia with differential outcome. Leukemia. 2014;28:321–8. https://doi.org/10.1038/leu.2013.198.

    Article  CAS  PubMed  Google Scholar 

  20. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33. https://doi.org/10.1016/j.bbmt.2009.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruggeri A, Labopin M, Ciceri F, Mohty M, Nagler A. Definition of GvHD-free, relapse-free survival for registry-based studies: an ALWP-EBMT analysis on patients with AML in remission. Bone Marrow Transpl. 2016;51:610–1. https://doi.org/10.1038/bmt.2015.305.

    Article  CAS  Google Scholar 

  22. Dohner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–77. https://doi.org/10.1182/blood.2022016867.

    Article  CAS  PubMed  Google Scholar 

  23. Luquet I, Lai JL, Barin C, Baranger L, Bilhou-Nabera C, Lippert E, et al. Hyperdiploid karyotypes in acute myeloid leukemia define a novel entity: a study of 38 patients from the Groupe Francophone de Cytogenetique Hematologique (GFCH). Leukemia. 2008;22:132–7. https://doi.org/10.1038/sj.leu.2404974.

    Article  CAS  PubMed  Google Scholar 

  24. Lazarevic V, Rosso A, Juliusson G, Antunovic P, Rangert-Derolf A, Lehmann S, et al. Prognostic significance of high hyperdiploid and triploid/tetraploid adult acute myeloid leukemia. Am J Hematol. 2015;90:800–5. https://doi.org/10.1002/ajh.24091.

    Article  CAS  PubMed  Google Scholar 

  25. Lazarevic VL, Rosso A, Juliusson G, Antunovic P, Derolf AR, Deneberg S, et al. Incidence and prognostic significance of isolated trisomies in adult acute myeloid leukemia: a population-based study from the Swedish AML registry. Eur J Haematol. 2017;98:493–500. https://doi.org/10.1111/ejh.12861.

    Article  CAS  PubMed  Google Scholar 

  26. Farag SS, Archer KJ, Mrozek K, Vardiman JW, Carroll AJ, Pettenati MJ, et al. Isolated trisomy of chromosomes 8, 11, 13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int J Oncol. 2002;21:1041–51.

    CAS  PubMed  Google Scholar 

  27. Wolman SR, Gundacker H, Appelbaum FR, Slovak ML.Southwest Oncology G. Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood. 2002;100:29–35. https://doi.org/10.1182/blood.v100.1.29. e-pub ahead of print 2002/06/19.

    Article  CAS  PubMed  Google Scholar 

  28. Schoch C, Haase D, Fonatsch C, Haferlach T, Loffler H, Schlegelberger B, et al. The significance of trisomy 8 in de novo acute myeloid leukaemia: the accompanying chromosome aberrations determine the prognosis. German AML Cooperative Study Group. Br J Haematol. 1997;99:605–11. https://doi.org/10.1046/j.1365-2141.1997.4473257.x.

    Article  CAS  PubMed  Google Scholar 

  29. Paulsson K, Johansson B. Trisomy 8 as the sole chromosomal aberration in acute myeloid leukemia and myelodysplastic syndromes. Pathol Biol. 2007;55:37–48. https://doi.org/10.1016/j.patbio.2006.04.007.

    Article  CAS  PubMed  Google Scholar 

  30. Schoch C, Kohlmann A, Dugas M, Kern W, Schnittger S, Haferlach T. Impact of trisomy 8 on expression of genes located on chromosome 8 in different AML subgroups. Genes Chromosomes Cancer. 2006;45:1164–8. https://doi.org/10.1002/gcc.20380.

    Article  CAS  PubMed  Google Scholar 

  31. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28. https://doi.org/10.1182/blood.2022015850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alpermann T, Haferlach C, Eder C, Nadarajah N, Meggendorfer M, Kern W, et al. AML with gain of chromosome 8 as the sole chromosomal abnormality (+8sole) is associated with a specific molecular mutation pattern including ASXL1 mutations in 46.8% of the patients. Leuk Res. 2015;39:265–72. https://doi.org/10.1016/j.leukres.2014.11.026.

    Article  CAS  PubMed  Google Scholar 

  33. Bhatnagar B, Eisfeld AK, Kohlschmidt J, Mrozek K, Nicolet D, Papaioannou D, et al. Clinical and molecular characterization of patients with acute myeloid leukemia and sole trisomies of chromosomes 4, 8, 11, 13 or 21. Leukemia. 2020;34:358–68. https://doi.org/10.1038/s41375-019-0560-3.

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Han W, Cai X, Wang Z, Cao L, Hua H, et al. Molecular genetic and clinical characterization of acute myeloid leukemia with trisomy 8 as the sole chromosome abnormality. Hematology. 2022;27:565–74. https://doi.org/10.1080/16078454.2022.2071799.

    Article  CAS  PubMed  Google Scholar 

  35. Zong X, Yao H, Wen L, Ma L, Wang Q, Yang Z, et al. ASXL1 mutations are frequent in de novo AML with trisomy 8 and confer an unfavorable prognosis. Leuk Lymphoma. 2017;58:204–6. https://doi.org/10.1080/10428194.2016.1179296.

    Article  PubMed  Google Scholar 

  36. Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S. Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood. 2007;110:1308–16. https://doi.org/10.1182/blood-2007-02-072595.

    Article  CAS  PubMed  Google Scholar 

  37. Herold T, Metzeler KH, Vosberg S, Hartmann L, Rollig C, Stolzel F, et al. Isolated trisomy 13 defines a homogeneous AML subgroup with high frequency of mutations in spliceosome genes and poor prognosis. Blood. 2014;124:1304–11. https://doi.org/10.1182/blood-2013-12-540716.

    Article  CAS  PubMed  Google Scholar 

  38. Silva FP, Lind A, Brouwer-Mandema G, Valk PJ, Giphart-Gassler M. Trisomy 13 correlates with RUNX1 mutation and increased FLT3 expression in AML-M0 patients. Haematologica. 2007;92:1123–6. https://doi.org/10.3324/haematol.11296.

    Article  CAS  PubMed  Google Scholar 

  39. Kuwatsuka Y, Miyamura K, Suzuki R, Kasai M, Maruta A, Ogawa H, et al. Hematopoietic stem cell transplantation for core binding factor acute myeloid leukemia: t(8;21) and inv(16) represent different clinical outcomes. Blood. 2009;113:2096–103. https://doi.org/10.1182/blood-2008-03-145862.

    Article  CAS  PubMed  Google Scholar 

  40. Poire X, Labopin M, Polge E, Blaise D, Chevallier P, Maertens J, et al. Hematopoietic stem cell transplantation for adult patients with isolated NPM1 mutated acute myeloid leukemia in first remission. Am J Hematol. 2019;94:231–9. https://doi.org/10.1002/ajh.25355.

    Article  CAS  PubMed  Google Scholar 

  41. Potdar R, Varadi G, Fein J, Labopin M, Nagler A, Shouval R. Prognostic scoring systems in allogeneic hematopoietic stem cell transplantation: where do we stand? Biol Blood Marrow Transpl. 2017;23:1839–46. https://doi.org/10.1016/j.bbmt.2017.07.028.

    Article  Google Scholar 

  42. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9. https://doi.org/10.1182/blood-2005-05-2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sorror ML, Storb RF, Sandmaier BM, Maziarz RT, Pulsipher MA, Maris MB, et al. Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J Clin Oncol. 2014;32:3249–56.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XP, AN, JE and MM wrote the manuscript; XP, ML, AN, JE and MM designed the study; XP, ML, AN, JE and MM analysed the data; EP, AG, GS, TGD, EF, JF, YC, CEB, IYA, MA, NK and IWB provide the data and reviewed the manuscript.

Corresponding author

Correspondence to Xavier Poiré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poiré, X., Labopin, M., Polge, E. et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia with hyperdiploid complex karyotype. Bone Marrow Transplant 59, 264–269 (2024). https://doi.org/10.1038/s41409-023-02167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-02167-1

Search

Quick links