Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mafosfamide, a cyclophosphamide analog, causes a proinflammatory response and increased permeability on endothelial cells in vitro

Abstract

Post-transplantation cyclophosphamide (PTCy) has decreased GVHD incidence. Endothelial damage in allo-HCT is caused by multiple factors, including conditioning treatments and some immunosupressants, and underlies HCT-complications as GVHD. Nevertheless, the specific impact of PTCy on the endothelium remains unclear. We evaluated the effect of mafosfamide (MAF), an active Cy analog, on endothelial cells (ECs) vs. cyclosporine A (CSA), with known damaging endothelial effect. ECs were exposed to MAF and CSA to explore changes in endothelial damage markers: (i) surface VCAM-1, (ii) leukocyte adhesion on ECs, (iii) VE-cadherin expression, (iv) production of VWF, and (v) activation of intracellular signaling proteins (p38MAPK, Akt). Results obtained (expressed in folds vs. controls) indicate that both compounds increased VCAM-1 expression (3.1 ± 0.3 and 2.8 ± 0.6, respectively, p < 0.01), with higher leukocyte adhesion (5.5 ± 0.6, p < 0.05, and 2.8 ± 0.4, respectively). VE-cadherin decreased with MAF (0.8 ± 0.1, p < 0.01), whereas no effect was observed with CSA. Production of VWF augmented with CSA (1.4 ± 0.1, p < 0.01), but diminished with MAF (0.9 ± 0.1, p < 0.05). p38MAPK activation occurred with both compounds, being more intense and faster with CSA. Both drugs activated Akt, with superior MAF effect at longer exposure. Therefore, the cyclophosphamide analog MAF is not exempt from a proinflammatory effect on the endothelium, though without modifying the subendothelial characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of VCAM-1 on ECs exposed to mafosfamide or cyclosporine A, separately.
Fig. 2: Expression of VE-cadherin on ECs exposed to mafosfamide or cyclosporine A, separately.
Fig. 3: Expression of VWF on ECs exposed to mafosfamide or cyclosporine A, separately.
Fig. 4: Differential activation of the intracellular signaling proteins p38MAPK and Akt in ECs exposed to mafosfamide or cyclosporine A, separately.

Similar content being viewed by others

Data availability

All authors agree that all data and materials support the published claims and comply with field standards.

Code availability

The authors affirm that software application or custom code is not applicable in this study.

References

  1. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.

    Article  CAS  Google Scholar 

  2. Lehnert S, Rybka W. Amplification of the graft-versus-host reaction by cyclophosphamide: dependence on timing of drug administration. Bone Marrow Transpl. 1994;13:473–7.

    CAS  Google Scholar 

  3. Luznik L, O’Donnell PV, Ephraim J. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical BMT. Semin Oncol. 2012;39:683–93.

    Article  CAS  PubMed  Google Scholar 

  4. Kanakry JA, Kasamon YL, Bolaños-Meade J, Borrello IM, Brodsky RA, Fuchs EJ, et al. Absence of post-transplantation lymphoproliferative disorder after allogeneic blood or marrow transplantation using post-transplantation cyclophosphamide as graft-versus-host disease prophylaxis. Biol Blood Marrow Transpl. 2013;19:1514–7.

    Article  Google Scholar 

  5. McCurdy SR, Luznik L. How we perform haploidentical stem cell transplantation with posttransplant cyclophosphamide. Hematol Am Soc Hematol Educ Program. 2019;2019:513–21.

    Article  Google Scholar 

  6. Kanakry CG, Ganguly S, Zahurak M, Bolaños-Meade J, Thoburn C, Perkins B, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bolaños-Meade J, Fuchs EJ, Luznik L, Lanzkron SM, Gamper CJ, Jones RJ, et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120:4285–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McCurdy SR, Luznik L. Post-transplantation cyclophosphamide for chimerism-based tolerance. Bone Marrow Transpl. 2019;54:769–74.

    Article  Google Scholar 

  9. Holtan SG, Pasquini M, Weisdorf DJ. Acute graft-versus-host disease: a bench-to-bedside update. Blood. 2014;124:363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carreras E, Diaz-Ricart M. The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transpl. 2011;46:1495–502.

    Article  CAS  Google Scholar 

  11. Penack O, Socié G, Van, den Brink MRM. The importance of neovascularization and its inhibition for allogeneic hematopoietic stem cell transplantation. Blood 2011;117:4181–9.

    Article  CAS  PubMed  Google Scholar 

  12. Palomo M, Diaz-Ricart M, Carreras E. Endothelial dysfunction in hematopoietic cell transplantation. Clin Hematol Int. 2019;1:45.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yano K, Gale D, Massberg S, Cheruvu PK, Monahan-Earley R, Morgan ES, et al. Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 2007;109:613–5.

    Article  CAS  PubMed  Google Scholar 

  14. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    Article  CAS  PubMed  Google Scholar 

  15. Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100:174–90.

    Article  CAS  PubMed  Google Scholar 

  16. Mir E, Palomo M, Rovira M, Pereira A, Escolar G, Penack O, et al. Endothelial damage is aggravated in acute GvHD and could predict its development. Bone Marrow Transpl. 2017;52:1317–25.

    Article  CAS  Google Scholar 

  17. Martinez-Sanchez J, Hamelmann H, Palomo M, Mir E, Moreno-Castaño AB, Torramade S, et al. Acute graft-vs.-host disease-associated endothelial activation in vitro is prevented by defibrotide. Front Immunol. 2019;10:2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuste B, Escolar G, Marin P, Mazzara R, Ordinas A, Diaz-Ricart M. G-CSF increases the expression of VCAM-1 on stromal cells promoting the adhesion of CD34 + hematopoietic cells: Studies under flow conditions. Exp Hematol. 2004;32:765–72.

    Article  CAS  PubMed  Google Scholar 

  19. Carmona A, Díaz-Ricart M, Palomo M, Molina P, Pino M, Rovira M, et al. Distinct deleterious effects of cyclosporine and tacrolimus and combined tacrolimus–sirolimus on endothelial cells: protective effect of defibrotide. Biol Blood Marrow Transpl. 2013;19:1439–45.

    Article  CAS  Google Scholar 

  20. Martinez-Sanchez J, Palomo M, Torramade-Moix S, Moreno-Castaño AB, Rovira M, Gutiérrez-García G, et al. The induction strategies administered in the treatment of multiple myeloma exhibit a deleterious effect on the endothelium. Bone Marrow Transpl. 2020;55:2270–8.

    Article  CAS  Google Scholar 

  21. Sandmaier BM, Kornblit B, Storer BE, Olesen G, Maris MB, Langston AA, et al. Effectiveness of addition of sirolimus to cyclosporine and mycophenolate mofetil-based graft-versus-host disease prophylaxis after unrelated nonmyeloablative hematopoietic cell transplantation: A multicentre phase III randomized trial. Lancet Haematol. 2019;6:e418.

    Article  Google Scholar 

  22. Ruutu T, Gratwohl A, de Witte T, Afanasyev B, Apperley J, Bacigalupo A, et al. Prophylaxis and treatment of GVHD: EBMT–ELN working group recommendations for a standardized practice. Bone Marrow Transpl. 2014;49:168–73.

    Article  CAS  Google Scholar 

  23. Gallego C, Sánchez P, Planells C, Sánchez S, Monte E, Romá E, et al. Interaction between probucol and cyclosporine in renal transplant patients. Ann Pharmacother. 1994;28:940–3.

    CAS  PubMed  Google Scholar 

  24. Rafiee P, Johnson CP, Li MS, Ogawa H, Heidemann J, Fisher PJ, et al. Cyclosporine A enhances leukocyte binding by human intestinal microvascular endothelial cells through inhibition of p38 MAPK and iNOS paradoxical proinflammatory effect on the microvascular endothelium. J Biol Chem. 2002;277:35605–15.

    Article  CAS  PubMed  Google Scholar 

  25. Pedraza A, Jorge S, Suárez-Lledó M, Pereira A, Gutiérrez-García G, Fernández-Avilés F, et al. High-dose cyclophosphamide and tacrolimus as graft-versus-host disease prophylaxis for matched and mismatched unrelated donor transplantation. Transpl Cell Ther. 2021;27:619.e1–619.e8.

    Article  CAS  Google Scholar 

  26. Salas MQ, Charry P, Pedraza A, Martínez-Cibrian N, Solano MT, Domenech A, et al. PTCY and tacrolimus for GVHD prevention for older adults undergoing HLA-matched sibling and unrelated donor AlloHCT. Transpl Cell Ther. 2022;28:489.e1–489.e9.

    Article  CAS  Google Scholar 

  27. Van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S, et al. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One. 2009;4:e6982.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goldstein M, Roos WP, Kaina B. Apoptotic death induced by the cyclophosphamide analogue mafosfamide in human lymphoblastoid cells: Contribution of DNA replication, transcription inhibition and Chk/p53 signaling. Toxicol Appl Pharm. 2008;229:20–32.

    Article  CAS  Google Scholar 

  29. Egorin MJ, Kaplan RS, Salcman M, Aisner J, Colvin M, Wiernik PH, et al. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin Pharm Ther. 1982;32:122–8.

    Article  CAS  Google Scholar 

  30. De Jonge ME, Huitema ADR, Rodenhuis S, Beijnen JH. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet. 2005;44:1135–64.

    Article  PubMed  Google Scholar 

  31. Palomo M, Mir E, Rovira M, Escolar G, Carreras E, Diaz-Ricart M. What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance. Blood. 2016;127:1719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  33. Ljungman P, Bregni M, Brune M, Cornelissen J, Witte T, Dini G, et al. Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009. Bone Marrow Transpl. 2010;45:219–34.

    Article  CAS  Google Scholar 

  34. Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transpl. 2003;31:229–39.

    Article  CAS  Google Scholar 

  35. Rimando JC, McCurdy SR, Luznik L. How we prevent GVHD in high risk patients: post transplant cyclophosphamide and beyond. Blood. 2022;blood.2021015129.

  36. Kernan NA, Collins NH, Juliano L, Cartagena T, Dupont B, O’Reilly RJ. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 1986;68:770–3.

    Article  CAS  PubMed  Google Scholar 

  37. Kernan NA, Flomenberg N, Dupont B, O’Reilly RJ. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation. 1987;43:842–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124:344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest. 2019;129:2357–73.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ishida S, Doki N, Shingai N, Yoshioka K, Kakihana K, Sakamaki H, et al. The clinical features of fatal cyclophosphamide-induced cardiotoxicity in a conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo-HSCT). Ann Hematol. 2016;95:1145–50.

    Article  CAS  PubMed  Google Scholar 

  41. Braverman AC, Antin JH, Plappert MT, Cook EF, Lee RT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9:1215–23.

    Article  CAS  PubMed  Google Scholar 

  42. Ching C, Gustafson D, Thavendiranathan P, Fish JE. Cancer therapy-related cardiac dysfunction: is endothelial dysfunction at the heart of the matter? Clin Sci. 2021;135:1487–503.

    Article  CAS  Google Scholar 

  43. Sharkis S, Santos G, Colvin M. Elimination of acute myelogenous leukemic cells from marrow and tumor suspensions in the rat with 4-hydroperoxycyclophosphamide. Blood. 1980;55:521–3.

    Article  CAS  PubMed  Google Scholar 

  44. Gorin N, Aegerter P, Auvert B, Meloni G, Goldstone A, Burnett A, et al. Autologous bone marrow transplantation for acute myelocytic leukemia in first remission: A European survey of the role of marrow purging. Blood. 1990;75:1606–14.

    Article  CAS  PubMed  Google Scholar 

  45. Shpall E, Stemmer S, Hami L, Franklin W, Shaw L, Bonner H, et al. Amifostine (WR-2721) shortens the engraftment period of 4-hydroperoxycyclophosphamide-purged bone marrow in breast cancer patients receiving high-dose chemotherapy with autologous bone marrow support. Blood. 1994;83:3132–7.

    Article  CAS  PubMed  Google Scholar 

  46. Wasserman TH, Phillips TL, Ross G, Kane LJ. Differential protection against cytotoxic chemotherapeutic effects on bone marrow CFUs by WR-2721. Cancer Clin Trials. 1981;4:3–6.

    CAS  PubMed  Google Scholar 

  47. Valeriote F, Tolen S. Protection and potentiation of nitrogen mustard cytotoxicity by WR-2721. Cancer Res. 1982;42:4330–1.

    CAS  PubMed  Google Scholar 

  48. Douay L, Hu C, Giarratana MC, Bouchet S, Conlon J, Capizzi RL, et al. Amifostine improves the antileukemic therapeutic index of mafosfamide: implications for bone marrow purging. Blood 1995;86:2849–55.

    Article  CAS  PubMed  Google Scholar 

  49. Henning RJ, Johnson GT, Coyle JP, Harbison RD. Acrolein can cause cardiovascular disease: a review. Cardiovasc Toxicol. 2017;17:227–36.

    Article  CAS  PubMed  Google Scholar 

  50. Zeng L, Yan Z, Ding S, Xu K, Wang L. Endothelial injury, an intriguing effect of methotrexate and cyclophosphamide during hematopoietic stem cell transplantation in mice. Transpl Proc. 2008;40:2670–3.

    Article  CAS  Google Scholar 

  51. DeJarnett N, Conklin DJ, Riggs DW, Myers JA, O’Toole TE, Hamzeh I, et al. Acrolein exposure is associated with increased cardiovascular disease risk. J Am Heart Assoc. 2014;3:e000934.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rom O, Kaisari S, Aizenbud D, Reznick AZ. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radic Biol Med. 2013;65:190–200.

    Article  CAS  PubMed  Google Scholar 

  53. Vestweber D. VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008;28:223–32.

    Article  CAS  PubMed  Google Scholar 

  54. Rademakers T, Goedhart M, Hoogenboezem M, Ponce AG, van Rijssel J, Samus M, et al. Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica. 2020;105:2746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: from physiology to therapeutics. Stem Cells. 2020;38:1241–53.

    Article  PubMed  Google Scholar 

  56. Lau S, Rangarajan R, Philidet C, Krüger-Genge A, Braune S, Kammerer S, et al. Effects of acrolein in comparison to its prodrug cyclophosphamide on human primary endothelial cells in vitro. Toxicol Vitr. 2020;62:104685.

    Article  CAS  Google Scholar 

  57. Solomon S, Nakamura R, Read E, Leitman S, Carter C, Childs R, et al. Cyclosporine is required to prevent severe acute GVHD following T-cell-depleted peripheral blood stem cell transplantation. Bone Marrow Transpl. 2003;31:783–8.

    Article  CAS  Google Scholar 

  58. Arranz R, Conde E, Rodriguez-Salvanés F, Pajuelo FJ, Cabrera R, Sanz MA, et al. CsA-based post-graft immunosuppression: the main factor for improving outcome of allografted patients with acquired aplastic anemia. A retrospective survey by the Spanish Group of Hematopoietic Transplantation. Bone Marrow Transpl. 2002;29:205–11.

    Article  CAS  Google Scholar 

  59. Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol. 2014;11:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gallego MJ, Zoja C, Morigi M, Micheletti G, Imberti B, Foppolo M, et al. Cyclosporine enhances leukocyte adhesion to vascular endothelium under physiologic flow conditions. Am J Kidney Dis. 1996;28:23–31.

    Article  CAS  PubMed  Google Scholar 

  61. Boittin FX, Beddek K, Thery H, Pateux J, Cosler G, Riccobono D, et al. The immunosuppressant drug Cyclosporin A aggravates irradiation effects in endothelial cells. Biochem Biophys Res Commun. 2022;602:127–34.

    Article  CAS  PubMed  Google Scholar 

  62. Al-Nouri ZL, Reese JA, Terrell DR, Vesely SK, George JN. Brief report drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood 2015;125:616–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nava F, Cappelli G, Mori G, Granito M, Magnoni G, Botta C, et al. Everolimus, cyclosporine, and thrombotic microangiopathy: clinical role and preventive tools in renal transplantation. Transpl Proc. 2014;46:2268.

    Article  Google Scholar 

  64. Jodele S, Laskin BL, Dandoy CE, Myers KC, El-Bietar J, Davies SM, et al. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2015;29:191–204.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Primary Hemostasis laboratory staff (Hospital Clínic, Barcelona) for technical support.

Funding

Study partially supported by Instituto de Salud Carlos III (FIS PI19/00888), Fundació Marató de TV3 (202026–10), Deutsche José Carreras Leukämie-Stiftung (03 R/ 2019), Generalitat de Catalunya (2017-SGR675, CERCA), Contrato Clínico de investigación “Emili Letang - Josep Font”.

Author information

Authors and Affiliations

Authors

Contributions

JMS and MDR designed the study and wrote the manuscript; JMS and RPD were responsible for the experimental work and the statistical analysis of results; JMS, MP, MDR and GE designed the figures; MP, ABMC, HV, MQS, MR, GE and EC contributed to discuss the results; all the authors contributed to the review and editing of the final manuscript.

Corresponding author

Correspondence to Maribel Diaz-Ricart.

Ethics declarations

Competing interests

None of the authors have conflicts of interest directly related to this work. MDR and EC have received honoraria from Jazz Pharmaceuticals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Sanchez, J., Pascual-Diaz, R., Palomo, M. et al. Mafosfamide, a cyclophosphamide analog, causes a proinflammatory response and increased permeability on endothelial cells in vitro. Bone Marrow Transplant 58, 407–413 (2023). https://doi.org/10.1038/s41409-023-01912-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-01912-w

Search

Quick links