Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of clinical outcomes between peripheral blood stem cells and peripheral blood stem cells plus bone marrow in myelodysplastic syndrome patients with haploidentical transplantation

Abstract

The comparison of haploidentical G-CSF-mobilized peripheral blood and bone marrow transplantation (HBMT) for patients with myelodysplastic syndrome (MDS) and haploidentical G-CSF-primed peripheral blood stem cell transplantation (HPBSCT) remains unclear. We performed a retrospective analysis using a propensity score method on 140 MDS patients who received HPBSCT (n = 46) or HBMT (n = 94) with BU/CY as a conditioning regimen prior to transplantation at our center between June 2016 and June 2021. HBMT recipients were associated with a reduced incidence of grade III-IV acute GVHD (17.22% vs. 30.57%, p = 0.019) within 100 days, reduced 2-year transplant-related mortality (TRM) (14.29% vs. 28.94%, p = 0.045) and superior 2-year overall survival (OS) (81.6% vs. 66.0%, p = 0.027), progression-free survival (PFS) (80.9% vs. 61.2%, p = 0.015), and GVHD relapse-free survival (GRFS) (64.6% vs. 53.3%, p = 0.062) compared with HPBSCT, but 2-year relapse incidence (RI) (5.96% vs. 9.39%, p = 0.445) was not affected. Multivariate analysis revealed that a GPB/GBM mixture was the independent factor for a reduced incidence of grade III-IV acute GVHD (p = 0.018) and TRM (p = 0.048), improved OS (p = 0.029), PFS (p = 0.019) and GRFS (p = 0.072). Collectively, the use of a GPB/GBM mixture as stem cell grafts for haplo-HSCT in patients with MDS appears to be an optimal choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutations in patients detected by next-generation sequencing.
Fig. 2: Survival outcomes for 140 MDS patients undergoing haplo-HSCT according to graft source.
Fig. 3: The forest plot of the subgroup analysis of the patients.
Fig. 4: Monitoring of chimerism and analysis of lymphocyte subsets after transplantation between two cohorts.

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cazzola M. Myelodysplastic Syndromes. N. Engl J Med. 2020;383:1358–74.

    Article  CAS  Google Scholar 

  2. Mo XD, Qin YZ, Zhang XH, Xu LP, Wang Y, Yan CH, et al. Minimal residual disease monitoring and preemptive immunotherapy in myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2016;95:1233–40.

    Article  CAS  Google Scholar 

  3. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N. Engl J Med. 2014;371:339–48.

    Article  CAS  Google Scholar 

  4. Kwok J, Guo M, Yang W, Ip P, Chan GCF, Ho J, et al. Estimation of optimal donor number in Bone Marrow Donor Registry: Hong Kong’s experience. Hum Immunol. 2017;78:610–3.

    Article  Google Scholar 

  5. Halagan M, Manor S, Shriki N, Yaniv I, Zisser B, Madbouly A, et al. East Meets West-Impact of Ethnicity on Donor Match Rates in the Ezer Mizion Bone Marrow Donor Registry. Biol Blood Marrow Transpl. 2017;23:1381–6.

    Article  Google Scholar 

  6. van Walraven SM, Brand A, Bakker JN, Heemskerk MB, Nillesen S, Bierings MB, et al. The increase of the global donor inventory is of limited benefit to patients of non-Northwestern European descent. Haematologica. 2017;102:176–83.

    Article  Google Scholar 

  7. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110:4576–83.

    Article  CAS  Google Scholar 

  8. Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104:1923–30.

    Article  CAS  Google Scholar 

  9. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.

    Article  CAS  Google Scholar 

  10. Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8.

    Article  CAS  Google Scholar 

  11. Bilmon IA, Kwan J, Gottlieb D, Kerridge I, McGurgan M, Huang G, et al. Haploidentical bone marrow transplants for haematological malignancies using non-myeloablative conditioning therapy and post-transplant immunosuppression with cyclophosphamide: results from a single Australian centre. Intern Med J. 2013;43:191–6.

    Article  CAS  Google Scholar 

  12. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant. 2006;38:291–7.

    Article  Google Scholar 

  13. Lv M, Huang X. Fighting against hematological malignancy in China: from unique system to global impact. Sci China Life Sci. 2015;58:1183–90.

    Article  Google Scholar 

  14. Apperley J, Niederwieser D, Huang XJ, Nagler A, Fuchs E, Szer J, et al. Haploidentical Hematopoietic Stem Cell Transplantation: A Global Overview Comparing Asia, the European Union, and the United States. Biol Blood Marrow Transpl. 2016;22:23–6.

    Article  Google Scholar 

  15. Xu LP, Liu KY, Liu DH, Chen H, Han W, Chen YH, et al. The inferiority of G-PB to rhG-CSF-mobilized blood and marrow grafts as a stem cell source in patients with high-risk acute leukemia who underwent unmanipulated HLA-mismatched/haploidentical transplantation: a comparative analysis. Bone Marrow Transpl. 2010;45:985–92.

    Article  CAS  Google Scholar 

  16. Zhao X, Gao F, Zhang X, Wang Y, Xu L, Liu K, et al. Improved clinical outcomes of rhG-CSF-mobilized blood and marrow haploidentical transplantation compared to propensity score-matched rhG-CSF-primed peripheral blood stem cell haploidentical transplantation: a multicenter study. Sci China Life Sci. 2016;59:1139–48.

    Article  CAS  Google Scholar 

  17. Haukoos JS. LR. The Propensity Score. JAMA. 2015;314:1637–8.

    Article  CAS  Google Scholar 

  18. Morgan CJ. Reducing bias using propensity score matching. J Nucl Cardiol. 2018;25:404–6.

    Article  Google Scholar 

  19. Ruggeri A, Labopin M, Ciceri F, Mohty M, Nagler A. Definition of GvHD-free, relapse-free survival for registry-based studies: an ALWP-EBMT analysis on patients with AML in remission. Bone Marrow Transpl. 2016;51:610–1.

    Article  CAS  Google Scholar 

  20. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15:825–8.

    CAS  Google Scholar 

  21. Kunacheewa C, Ungprasert P, Phikulsod P, Issaragrisil S, Owattanapanich W. Comparative Efficacy and Clinical Outcomes of Haploidentical Stem Cell Transplantation to Other Stem Sources for Treatment in Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients: A Systematic Review and Meta-Analysis. Cell Transpl. 2020;29:963689720904965.

    Article  Google Scholar 

  22. Grunwald MR, Zhang M-J, Elmariah H, Johnson MH, St. Martin A, Bashey A, et al. Alternative donor transplantation for myelodysplastic syndromes: haploidentical relative and matched unrelated donors. Blood Adv. 2021;5:975–83.

    Article  CAS  Google Scholar 

  23. Luznik L, Jalla S, Engstrom LW, Iannone R, Fuchs EJ. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–64.

    Article  CAS  Google Scholar 

  24. Sengsayadeth S, Savani BN, Blaise D, Mohty M. Haploidentical transplantation: selecting optimal conditioning regimen and stem cell source. Semin Hematol. 2016;53:111–4.

    Article  Google Scholar 

  25. Passweg JR, Baldomero H, Peters C, Gaspar HB, Cesaro S, Dreger P, et al. Hematopoietic SCT in Europe: data and trends in 2012 with special consideration of pediatric transplantation. Bone Marrow Transpl. 2014;49:744–50.

    Article  Google Scholar 

  26. Stem Cell Trialists’ Collaborative G. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol. 2005;23:5074–87.

    Article  Google Scholar 

  27. Mielcarek M, Storer B, Martin PJ, Forman SJ, Negrin RS, Flowers ME, et al. Long-term outcomes after transplantation of HLA-identical related G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow. Blood. 2012;119:2675–8.

    Article  CAS  Google Scholar 

  28. Castagna L, Crocchiolo R, Furst S, Bramanti S, El Cheikh J, Sarina B, et al. Bone Marrow Compared with Peripheral Blood Stem Cells for Haploidentical Transplantation with a Nonmyeloablative Conditioning Regimen and Post-transplantation Cyclophosphamide. Biol Blood Marrow Transplant. 2014;20:724–9.

    Article  Google Scholar 

  29. Salas MQ, Law AD, Lam W, Al-Shaibani Z, Loach D, Kim DDH, et al. Safety and Efficacy of Haploidentical Peripheral Blood Stem Cell Transplantation for Myeloid Malignancies Using Post-transplantation Cyclophosphamide and Anti-thymocyte Globulin as Graft-versus-Host Disease Prophylaxis. Clin Hematol Int. 2019;1:105–13.

    Google Scholar 

  30. Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Superior graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high-risk acute leukemia: an historic comparison. Biol Blood Marrow Transpl. 2011;17:821–30.

    Article  Google Scholar 

  31. Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Haploidentical/mismatched hematopoietic stem cell transplantation without in vitro T cell depletion for T cell acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2012;18:716–21.

    Article  Google Scholar 

  32. Huang XJ, Chang YJ. Unmanipulated HLA-mismatched/haploidentical blood and marrow hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2011;17:197–204.

    Article  CAS  Google Scholar 

  33. Wang HX, Yan HM, Wang ZD, Xue M, Liu J, Guo ZK. Haploidentical hematopoietic stem cell transplantation in hematologic malignancies with G-CSF mobilized bone marrow plus peripheral blood stem cells grafts without T cell depletion: a single center report of 29 cases. Leuk Lymphoma. 2012;53:654–9.

    Article  CAS  Google Scholar 

  34. Chen XH, Zhang C, Zhang X, Gao L, Gao L, Kong PY, et al. Role of antithymocyte globulin and granulocyte-colony stimulating factor-mobilized bone marrow in allogeneic transplantation for patients with hematologic malignancies. Biol Blood Marrow Transpl. 2009;15:266–73.

    Article  CAS  Google Scholar 

  35. Chen Y, Liu K, Xu L, Chen H, Liu D, Zhang X, et al. HLA-mismatched hematopoietic SCT without in vitro T-cell depletion for myelodysplastic syndrome. Bone Marrow Transpl. 2010;45:1333–9.

    Article  CAS  Google Scholar 

  36. Beatty PG, Clift RA, Mickelson EM, Nisperos BB, Flournoy N, Martin PJ, et al. Marrow transplantation from related donors other than HLA-identical siblings. N. Engl J Med. 1985;313:765–71.

    Article  CAS  Google Scholar 

  37. Guinan EC, Boussiotis VA, Neuberg D, Brennan LL, Hirano N, Nadler LM, et al. Transplantation of anergic histoincompatible bone marrow allografts. N. Engl J Med. 1999;340:1704–14.

    Article  CAS  Google Scholar 

  38. Goldman FD, Rumelhart SL, DeAlacron P, Holida MD, Lee NF, Miller J, et al. Poor outcome in children with refractory/relapsed leukemia undergoing bone marrow transplantation with mismatched family member donors. Bone Marrow Transpl. 2000;25:943–8.

    Article  CAS  Google Scholar 

  39. Chang YJ, Huang XJ, Zhao XY. In vivo induction of T-cell hyporesponsiveness and alteration of immunological cells of bone marrow grafts using granulocyte colony-stimulating factor. Haematologica. 2004;89:1517–24.

    Google Scholar 

  40. Chang YJ, Huang XJ, Zhao XY. A direct comparison of immunological characteristics of granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts and G-CSF-mobilized peripheral blood grafts. Haematologica. 2005;90:715–6.

    Google Scholar 

  41. Rutella S, Zavala F, Danese S, Kared H, Leone G. Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol. 2005;175:7085–91.

    Article  CAS  Google Scholar 

  42. Zhao XY, Xu LL, Lu SY, Huang XJ. IL-17-producing T cells contribute to acute graft-versus-host disease in patients undergoing unmanipulated blood and marrow transplantation. Eur J Immunol. 2011;41:514–26.

    Article  CAS  Google Scholar 

  43. Zhao XY, Lv M, Xu LL, Qian X, Huang XJ. Donor Th17 cells and IL-21 may contribute to the development of chronic graft-versus-host disease after allogeneic transplantation. Eur J Immunol. 2013;43:838–50.

    Article  CAS  Google Scholar 

  44. Wen Q, Kong Y, Zhao HY, Zhang YY, Han TT, Wang Y, et al. G-CSF-induced macrophage polarization and mobilization may prevent acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2019;54:1419–33.

    Article  CAS  Google Scholar 

  45. Zhao XY, Wang YT, Mo XD, Zhao XS, Wang YZ, Chang YJ, et al. Higher frequency of regulatory T cells in granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts compared with G-CSF-primed peripheral blood grafts. J Transl Med. 2015;13:145.

    Article  Google Scholar 

  46. Huang XJ, Chang YJ, Zhao XY. Maintaining hyporesponsiveness and polarization potential of T cells after in vitro mixture of G-CSF mobilized peripheral blood grafts and G-CSF primed bone marrow grafts in different proportions. Transpl Immunol. 2007;17:193–7.

    Article  CAS  Google Scholar 

  47. Chang YJ, Huang XJ. Haploidentical bone marrow transplantation without T-cell depletion. Semin Oncol. 2012;39:653–63.

    Article  Google Scholar 

  48. Chang YJ, Huang XJ. Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review. Clin Transpl. 2011;25:13–23.

    Article  CAS  Google Scholar 

  49. Chang YJ, Huang XJ. Haploidentical hematopoietic stem cell transplantation with unmanipulated granulocyte colony stimulating factor mobilized marrow and blood grafts. Curr Opin Hematol. 2012;19:454–61.

    Article  CAS  Google Scholar 

  50. Korbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood. 2001;98:2900–8.

    Article  CAS  Google Scholar 

  51. Issa JP. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat Clin Pr Oncol. 2005;2:S24–9.

    Article  CAS  Google Scholar 

  52. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823–9.

    Article  CAS  Google Scholar 

  53. Pinto AMM, Attadia V, Zappacosta S, Cimino R. Modulation of HLA-DR antigens expression in human myeloid leukaemia cells by cytarabine and 5-aza-2’-deoxycytidine. Lancet. 1984;2:867–8.

    Article  CAS  Google Scholar 

  54. Pinto A, Zagonel V. 5-Aza-2’-deoxycytidine (Decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present and future trends. Leukemia. 1993;7:51–60.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China (81730003, 81870120, 82070187, 82020108003, 82000140), the Social Development Project of Jiangsu Province (BE2019655), the Jiangsu Province Key R&D Program (BE2019798), the Suzhou Science Project (SKY2021104), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Key Research and Development Program (2019YFC0840604), and the Natural Science Foundation of Jiangsu Province (BK20200197).

Author information

Authors and Affiliations

Authors

Contributions

Depei Wu and Yang Xu were responsible for the conception of the study and paper revision. Mengqian Chu, Shuhong Hu, and Yifan Shen contributed to performing the research study, analyzing data and writing the manuscript. Danya Shen and Yuchen Zhan helped complete the research study and perform data analysis. Yi Fan, Jia Chen and Xiaowen Tang contributed to the data analysis, manuscript writing and study supervision.

Corresponding authors

Correspondence to Depei Wu or Yang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, M., Hu, S., Shen, Y. et al. Comparison of clinical outcomes between peripheral blood stem cells and peripheral blood stem cells plus bone marrow in myelodysplastic syndrome patients with haploidentical transplantation. Bone Marrow Transplant 58, 142–151 (2023). https://doi.org/10.1038/s41409-022-01862-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-022-01862-9

Search

Quick links