Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Use of checkpoint inhibitors in patients with lymphoid malignancies receiving allogeneic cell transplantation: a review

Abstract

Monoclonal antibodies against checkpoint receptors or its ligands have demonstrated high response rates and durable remissions in patients with relapsed Hodgkin lymphoma (HL) and other lymphoid malignancies. However, most patients will eventually progress on therapy and may benefit from further treatments including allogenic hematopoietic cell transplantation (allo-HCT). Furthermore, the use of checkpoint inhibitors (CPI) has emerged as a treatment option for patients relapsing after allo-HCT. The immune effects of the checkpoint blockade leading to a T-cell activation have raised some concerns on the safety of these therapies used either before or after allo-HCT, due to the potential risk of graft-versus-host disease (GVHD). Furthermore, CPI might also induce other immune toxicities, that can affect almost any organ, as a result of the dysregulation on the immune system balance. This review aims to focus on the evidence behind the use of CPI in patients with lymphoma who undergo allo-HCT. We summarize the clinical data generated to date about the use of CPI in HL and other lymphoid malignancies, the mechanisms of checkpoint inhibition in the context of allo-HCT as well as the clinical and biological observations of different GVHD prophylaxis in this setting. Furthermore, we discuss the evidence from retrospective series and early clinical trials on the feasibility and safety of the use of CPI in patients who relapsed after allo-HCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothetical mechanisms of donor T-cell activation by residual anti-PD-1 antibodies, on the weeks following allogeneic hematopoietic cell transplantation.

Similar content being viewed by others

References

  1. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9. https://doi.org/10.1056/NEJMoa1411087.

    Article  CAS  PubMed  Google Scholar 

  2. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53. https://doi.org/10.1056/NEJMoa1601202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol: Off J Am Soc Clin Oncol. 2018;36:1428–39. https://doi.org/10.1200/JCO.2017.76.0793.

    Article  CAS  Google Scholar 

  4. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17:1283–94. https://doi.org/10.1016/S1470-2045(16)30167-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bekoz H, Karadurmus N, Paydas S, Turker A, Toptas T, Firatli Tuglular T, et al. Nivolumab for relapsed or refractory Hodgkin lymphoma: real-life experience. Ann Oncol: Off J Eur Soc Med Oncol. 2017;28:2496–502. https://doi.org/10.1093/annonc/mdx341.

    Article  CAS  Google Scholar 

  6. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, Carter L, Iwai Y, Yagita H, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171:1272–7.

    Article  CAS  PubMed  Google Scholar 

  7. Holderried TAW, Fraccaroli A, Schumacher M, Heine A, Brossart P, Stelljes M, et al. The role of checkpoint blockade after allogeneic stem cell transplantation in diseases other than Hodgkin’s Lymphoma. Bone Marrow Transplant. 2019;54:1662–7. https://doi.org/10.1038/s41409-019-0498-0.

  8. Merryman RW, Kim HT, Zinzani PL, Carlo-Stella C, Ansell SM, Perales MA, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017;129:1380–8. https://doi.org/10.1182/blood-2016-09-738385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schoch LK, Cooke KR, Wagner-Johnston ND, Gojo I, Swinnen LJ, Imus P, et al. Immune checkpoint inhibitors as a bridge to allogeneic transplantation with posttransplant cyclophosphamide. Blood Adv. 2018;2:2226–9. https://doi.org/10.1182/bloodadvances.2018019208.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86. https://doi.org/10.1158/2159-8290.CD-18-0367.

    Article  PubMed  Google Scholar 

  11. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23. https://doi.org/10.1016/j.cell.2017.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu F, Zhao Y, Pang Y, Ji M, Sun Y, Wang H, et al. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett. 2020;497:178–89. https://doi.org/10.1016/j.canlet.2020.10.024.

    Article  CAS  PubMed  Google Scholar 

  13. Onishi H, Fujimura A, Oyama Y, Yamasaki A, Imaizumi A, Kawamoto M, et al. Hedgehog signaling regulates PDL-1 expression in cancer cells to induce anti-tumor activity by activated lymphocytes. Cell Immunol. 2016;310:199–204. https://doi.org/10.1016/j.cellimm.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  14. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61. https://doi.org/10.1016/j.ccell.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-like Protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176:334–47. e312. https://doi.org/10.1016/j.cell.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  16. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Int Immunopharmacol. 2019;77:105999. https://doi.org/10.1016/j.intimp.2019.105999.

    Article  CAS  PubMed  Google Scholar 

  17. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203–20. https://doi.org/10.1038/nrclinonc.2016.168.

    Article  CAS  PubMed  Google Scholar 

  18. Brodska B, Otevrelova P, Salek C, Fuchs O, Gasova Z, Kuzelova K. High PD-L1 expression predicts for worse outcome of leukemia patients with concomitant NPM1 and FLT3 mutations. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20112823.

  19. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34. https://doi.org/10.1084/jem.192.7.1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv. 2020;6. https://doi.org/10.1126/sciadv.abd2712.

  21. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2015;33:2004–12. https://doi.org/10.1200/JCO.2014.58.3708.

    Article  CAS  Google Scholar 

  22. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28. https://doi.org/10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  23. Scapin G, Yang X, Prosise WW, McCoy M, Reichert P, Johnston JM, et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol. 2015;22:953–8. https://doi.org/10.1038/nsmb.3129.

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Wang J, Wang R, Jiao S, Wang S, Zhang J, et al. Identification of a monoclonal antibody that targets PD-1 in a manner requiring PD-1 Asn58 glycosylation. Commun Biol. 2019;2:392. https://doi.org/10.1038/s42003-019-0642-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, et al. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. 2017;8:14369. https://doi.org/10.1038/ncomms14369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020;383:1328–39. https://doi.org/10.1056/NEJMoa1917346.

    Article  CAS  PubMed  Google Scholar 

  27. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–33.e17. https://doi.org/10.1016/j.cell.2017.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3. https://doi.org/10.1126/science.1202947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5. https://doi.org/10.1126/science.1160062.

    Article  CAS  PubMed  Google Scholar 

  30. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen R, Zinzani PL, Lee HJ, Armand P, Johnson NA, Brice P, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood. 2019;134:1144–53. https://doi.org/10.1182/blood.2019000324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II Study of the efficacy and safety of Pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol: Off J Am Soc Clin Oncol. 2017;35:2125–32. https://doi.org/10.1200/JCO.2016.72.1316.

    Article  CAS  Google Scholar 

  33. Richter MD, Pinkston O, Kottschade LA, Finnes HD, Markovic SN, Thanarajasingam U. Brief report: cancer immunotherapy in patients with preexisting rheumatic disease: the Mayo Clinic experience. Arthritis Rheumatol. 2018;70:356–60. https://doi.org/10.1002/art.40397.

    Article  PubMed  Google Scholar 

  34. Singh M, Jackson KJL, Wang JJ, Schofield P, Field MA, Koppstein D, et al. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell. 2020;180:878–94. e819. https://doi.org/10.1016/j.cell.2020.01.029.

    Article  CAS  PubMed  Google Scholar 

  35. Diefenbach CS, Hong F, Ambinder RF, Cohen JB, Robertson MJ, David KA, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020;7:e660–70. https://doi.org/10.1016/S2352-3026(20)30221-0.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Herrera AF, Moskowitz AJ, Bartlett NL, Vose JM, Ramchandren R, Feldman TA, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2018;131:1183–94. https://doi.org/10.1182/blood-2017-10-811224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moskowitz AJ, Advani RH, Bartlett NL, Vose JM, Ramchandren R, Feldman TA. et al. Brentuximab Vedotin and Nivolumab for relapsed or refractory classic Hodgkin lymphoma: long-term follow-up results from the Single-Arm Phase 1/2 Study. Blood. 2019;134 Suppl_1:238–238. https://doi.org/10.1182/blood-2019-122576 .

    Article  Google Scholar 

  38. Ramchandren R, Domingo-Domenech E, Rueda A, Trneny M, Feldman TA, Lee HJ, et al. Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the Phase II CheckMate 205 Study. J Clin Oncol: Off J Am Soc Clin Oncol. 2019;37:1997–2007. https://doi.org/10.1200/JCO.19.00315.

    Article  CAS  Google Scholar 

  39. Bröckelmann PJ, Goergen H, Keller U, Meissner J, Ordemann R, Halbsguth TV. et al. Nivolumab and AVD for early-stage unfavorable Hodgkin lymphoma (NIVAHL). Blood. 2019;134 Suppl_1:236–236. https://doi.org/10.1182/blood-2019-122406.

    Article  Google Scholar 

  40. Yasenchak CA, Bordoni R, Yazbeck V, Patel-Donnelly D, Anderson T, Larson T. et al. Phase 2 Study of frontline Brentuximab Vedotin Plus Nivolumab in patients with Hodgkin lymphoma aged ≥60 years. Blood. 2019;134 Suppl_1:237. https://doi.org/10.1182/blood-2019-124866.

    Article  Google Scholar 

  41. Armand P, Rodig S, Melnichenko V, Thieblemont C, Bouabdallah K, Tumyan G, et al. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J Clin Oncol: Off J Am Soc Clin Oncol. 2019;37:3291–9. https://doi.org/10.1200/JCO.19.01389.

    Article  CAS  Google Scholar 

  42. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a Phase Ib Study. J Clin Oncol: Off J Am Soc Clin Oncol. 2016;34:2698–704. https://doi.org/10.1200/JCO.2015.65.9789.

    Article  CAS  Google Scholar 

  43. Armand P, Janssens AM, Gritti G, Radford J, Timmerman JM, Pinto A, et al. Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood. 2020. https://doi.org/10.1182/blood.2019004753.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a Single-Arm, Phase II Study. J Clin Oncol: Off J Am Soc Clin Oncol. 2019;37:481–9. https://doi.org/10.1200/JCO.18.00766.

    Article  CAS  Google Scholar 

  45. Ansell S, Gutierrez ME, Shipp MA, Gladstone D, Moskowitz A, Borello I, et al. A Phase 1 Study of Nivolumab in combination with Ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128:183. https://doi.org/10.1182/blood.V128.22.183.183.

    Article  Google Scholar 

  46. Jain N, Ferrajoli A, Basu S, Thompson PA, Burger JA, Kadia TM. et al. A Phase II Trial of Nivolumab combined with Ibrutinib for patients with Richter transformation. Blood. 2018;132 Suppl_1:296–296. https://doi.org/10.1182/blood-2018-99-120355.

    Article  Google Scholar 

  47. Younes A, Brody J, Carpio C, Lopez-Guillermo A, Ben-Yehuda D, Ferhanoglu B, et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol. 2019;6:e67–78. https://doi.org/10.1016/S2352-3026(18)30217-5.

    Article  PubMed  Google Scholar 

  48. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31:4199–206. https://doi.org/10.1200/JCO.2012.48.3685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Goycoechea D, Stalder G, Martins F, Duchosal MA. Immune checkpoint inhibition in classical Hodgkin lymphoma: from early achievements towards new perspectives. J Oncol. 2019;2019:9513701. https://doi.org/10.1155/2019/9513701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Connors JM, Cozen W, Steidl C, Carbone A, Hoppe RT, Flechtner HH, et al. Hodgkin lymphoma. Nat Rev Dis Prim. 2020;6:61. https://doi.org/10.1038/s41572-020-0189-6.

    Article  PubMed  Google Scholar 

  51. Paul S, Zahurak M, Luznik L, Ambinder RF, Fuchs EJ, Bolanos-Meade J, et al. Non-myeloablative allogeneic transplantation with post-transplant cyclophosphamide after immune checkpoint inhibition for classic Hodgkin lymphoma: a Retrospective Cohort Study. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2020;26:1679–88. https://doi.org/10.1016/j.bbmt.2020.06.012.

    Article  CAS  Google Scholar 

  52. Desnoyer A, Broutin S, Delahousse J, Maritaz C, Blondel L, Mir O, et al. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 2, immune checkpoint inhibitor antibodies. Eur J Cancer. 2020;128:119–28. https://doi.org/10.1016/j.ejca.2020.01.003.

    Article  CAS  PubMed  Google Scholar 

  53. Nieto JC, Roldan E, Jimenez I, Fox L, Carabia J, Orti G, et al. Posttransplant cyclophosphamide after allogeneic hematopoietic cell transplantation mitigates the immune activation induced by previous nivolumab therapy. Leukemia. 2020. https://doi.org/10.1038/s41375-020-0851-8.

  54. Martinez C, Carpio C, Heras I, Rios-Herranz E, Buch J, Gutierrez A, et al. Potential survival benefit for patients receiving allogeneic hematopoietic stem cell transplantation after nivolumab therapy for relapse/refractory Hodgkin lymphoma: real-life experience in Spain. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2020;26:1534–42. https://doi.org/10.1016/j.bbmt.2020.02.003.

    Article  CAS  Google Scholar 

  55. Rivas MM, Berro M, Prates MV, Yantorno S, Fiad L, Arbelbide JA, et al. Allogeneic stem cell transplantation improves survival in relapsed Hodgkin lymphoma patients achieving complete remission after salvage treatment. Bone Marrow Transplant. 2020;55:117–25. https://doi.org/10.1038/s41409-019-0640-z.

    Article  PubMed  Google Scholar 

  56. Sureda A, Canals C, Arranz R, Caballero D, Ribera JM, Brune M, et al. Allogeneic stem cell transplantation after reduced intensity conditioning in patients with relapsed or refractory Hodgkin’s lymphoma. Results of the HDR-ALLO study—a prospective clinical trial by the Grupo Espanol de Linfomas/Trasplante de Medula Osea (GEL/TAMO) and the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Haematologica. 2012;97:310–7. https://doi.org/10.3324/haematol.2011.045757.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Manson G, Herbaux C, Brice P, Bouabdallah K, Stamatoullas A, Schiano JM, et al. Prolonged remissions after anti-PD-1 discontinuation in patients with Hodgkin lymphoma. Blood. 2018;131:2856–9. https://doi.org/10.1182/blood-2018-03-841262.

    Article  CAS  PubMed  Google Scholar 

  58. Dada R, Usman B. Allogeneic hematopoietic stem cell transplantation in r/r Hodgkin lymphoma after treatment with checkpoint inhibitors: feasibility and safety. Eur J Haematol. 2019;102:150–6. https://doi.org/10.1111/ejh.13186.

    Article  CAS  PubMed  Google Scholar 

  59. Ikegawa S, Meguri Y, Kondo T, Sugiura H, Sando Y, Nakamura M, et al. PTCy ameliorates GVHD by restoring regulatory and effector T-cell homeostasis in recipients with PD-1 blockade. Blood Adv. 2019;3:4081–94. https://doi.org/10.1182/bloodadvances.2019000134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ito A, Kim SW, Matsuoka KI, Kawakita T, Tanaka T, Inamoto Y, et al. Safety and efficacy of anti-programmed cell death-1 monoclonal antibodies before and after allogeneic hematopoietic cell transplantation for relapsed or refractory Hodgkin lymphoma: a multicenter retrospective study. Int J Hematol. 2020;112:674–89. https://doi.org/10.1007/s12185-020-02960-4.

    Article  CAS  PubMed  Google Scholar 

  61. El Cheikh J, Massoud R, Abudalle I, Haffar B, Mahfouz R, Kharfan-Dabaja MA, et al. Nivolumab salvage therapy before or after allogeneic stem cell transplantation in Hodgkin lymphoma. Bone Marrow Transplant. 2017;52:1074–7. https://doi.org/10.1038/bmt.2017.69.

    Article  CAS  PubMed  Google Scholar 

  62. Herbaux C, Merryman R, Devine S, Armand P, Houot R, Morschhauser F, et al. Recommendations for managing PD-1 blockade in the context of allogeneic HCT in Hodgkin lymphoma: taming a necessary evil. Blood. 2018;132:9–16. https://doi.org/10.1182/blood-2018-02-811174.

    Article  CAS  PubMed  Google Scholar 

  63. Angenendt L, Schliemann C, Lutz M, Rebber E, Schulze AB, Weckesser M, et al. Nivolumab in a patient with refractory Hodgkin’s lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:443–5. https://doi.org/10.1038/bmt.2015.266.

    Article  CAS  PubMed  Google Scholar 

  64. Aslan A, Aras T, Ozdemir E. Successful treatment of relapsed/refractory Hodgkins lymphoma with nivolumab in a heavily pretreated patient with progressive disease after both autologous and allogeneic stem cell transplantation. Leuk Lymphoma. 2017;58:754–5. https://doi.org/10.1080/10428194.2016.1213835.

    Article  PubMed  Google Scholar 

  65. Godfrey J, Bishop MR, Syed S, Hyjek E, Kline J. PD-1 blockade induces remissions in relapsed classical Hodgkin lymphoma following allogeneic hematopoietic stem cell transplantation. J Immunother Cancer. 2017;5:11. https://doi.org/10.1186/s40425-017-0211-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McDuffee E, Aue G, Cook L, Ramos-Delgado C, Shalabi R, Worthy T, et al. Tumor regression concomitant with steroid-refractory GvHD highlights the pitfalls of PD-1 blockade following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52:759–61. https://doi.org/10.1038/bmt.2016.346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh AK, Porrata LF, Aljitawi O, Lin T, Shune L, Ganguly S, et al. Fatal GvHD induced by PD-1 inhibitor pembrolizumab in a patient with Hodgkin’s lymphoma. Bone Marrow Transplant. 2016;51:1268–70. https://doi.org/10.1038/bmt.2016.111.

    Article  CAS  PubMed  Google Scholar 

  68. Villasboas JC, Ansell SM, Witzig TE. Targeting the PD-1 pathway in patients with relapsed classic Hodgkin lymphoma following allogeneic stem cell transplant is safe and effective. Oncotarget. 2016;7:13260–4. https://doi.org/10.18632/oncotarget.7177.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yared JA, Hardy N, Singh Z, Hajj S, Badros AZ, Kocoglu M, et al. Major clinical response to nivolumab in relapsed/refractory Hodgkin lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:850–2. https://doi.org/10.1038/bmt.2015.346.

    Article  CAS  PubMed  Google Scholar 

  70. Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood. 2017;129:2471–8. https://doi.org/10.1182/blood-2016-11-749556.

    Article  CAS  PubMed  Google Scholar 

  71. Haverkos BM, Abbott D, Hamadani M, Armand P, Flowers ME, Merryman R, et al. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood. 2017;130:221–8. https://doi.org/10.1182/blood-2017-01-761346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schoch LK, Borrello I, Fuchs EJ, Bolanos-Meade J, Huo JS, Gojo I, et al. Checkpoint inhibitor therapy and graft versus host disease in allogeneic bone marrow transplant recipients of haploidentical and matched products with post-transplant cyclophosphamide. Blood. 2016;128:4571–4571. https://doi.org/10.1182/blood.V128.22.4571.4571.

    Article  Google Scholar 

  73. Davids MS, Kim HT, Costello C, Herrera AF, Locke FL, Maegawa RO, et al. A multicenter phase 1 study of nivolumab for relapsed hematologic malignancies after allogeneic transplantation. Blood. 2020;135:2182–91. https://doi.org/10.1182/blood.2019004710.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113:1581–8. https://doi.org/10.1182/blood-2008-07-168468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khouri IF, Fernandez Curbelo I, Turturro F, Jabbour EJ, Milton DR, Bassett RL Jr, et al. Ipilimumab plus Lenalidomide after allogeneic and autologous stem cell transplantation for patients with lymphoid malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2018;24:1011–8. https://doi.org/10.1158/1078-0432.CCR-17-2777.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Figure 1 was created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Barba.

Ethics declarations

Conflict of interest

SB has received honoraria from Roche, BMS, and Janssen, not related with the present study. PB declares having received honoraria from Amgen, BMS, Gilead, Novartis, and Pfizer and not related with the present article. PB has received funding from Asociación Española Contra el Cancer. Ideas Semilla 2019. The other author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobillo, S., Nieto, J.C. & Barba, P. Use of checkpoint inhibitors in patients with lymphoid malignancies receiving allogeneic cell transplantation: a review. Bone Marrow Transplant 56, 1784–1793 (2021). https://doi.org/10.1038/s41409-021-01268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01268-z

This article is cited by

Search

Quick links