Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Machine learning applied to gene expression analysis of T-lymphocytes in patients with cGVHD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene clustering and their influence in each group.

References

  1. MacDonald KP, Hill GR, Blazar BR. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood. 2017;129:13–21.

    Article  CAS  Google Scholar 

  2. Finke J, Bethge WA, Schmoor C, Ottinger HD, Stelljes M, Zander AR, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10:855–64.

    Article  CAS  Google Scholar 

  3. Im A, Hakim FT, Pavletic SZ. Novel targets in the treatment of chronic graft-versus-host disease. Leukemia. 2017;31:543–54.

    Article  CAS  Google Scholar 

  4. Yu J, Storer BE, Kushekhar K, Abu Zaid M, Zhang Q, Gafken PR, et al. Biomarker panel for chronic graft-versus-host disease. J Clin Oncol. 2016;34:2583–90.

    Article  CAS  Google Scholar 

  5. Gandelman JS, Byrne MT, Mistry AM, Polikowsky HG, Diggins KE, Chen H, et al. Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica. 2019;104:189–96.

    Article  CAS  Google Scholar 

  6. Lee SJ. Classification systems for chronic graft-versus-host disease. Blood. 2017;129:30–37.

    Article  CAS  Google Scholar 

  7. Breiman L. Randon forest. Mach Learn. 2001;45:5–32.

    Google Scholar 

  8. Diaz-Uriarte R, de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinforma. 2006;7:1–13.

    Article  Google Scholar 

  9. Xiaodan F, Yuan Y, Jun SL. The EM algorithm and the rise of computational biology. Stat Sci. 2010;25:476–91.

    Article  Google Scholar 

  10. Kursa MB, Rudnicki WR. Feature selection with Boruta Package. J Stat Soft. 2010;36:2–13.

    Article  Google Scholar 

  11. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy reponse. Nat Med. 2018;4:1550–58.

    Article  Google Scholar 

  12. Horn S, Leonardelli S, Sucker A. Tumor CDKN2A-associated JAK2 loss and susceptibility to immunotherapy resistance. JNCI J Natl Cancer Inst. 2018;110:677–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juana Serrano-López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano-López, J., Fernández, J.L., Lumbreras, E. et al. Machine learning applied to gene expression analysis of T-lymphocytes in patients with cGVHD. Bone Marrow Transplant 55, 1668–1670 (2020). https://doi.org/10.1038/s41409-020-0848-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-0848-y

Search

Quick links