Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPR97 deficiency ameliorates renal interstitial fibrosis in mouse hypertensive nephropathy

Abstract

Hypertensive nephropathy (HTN) ranks as the second-leading cause of end-stage renal disease (ESRD). Accumulating evidence suggests that persistent hypertension injures tubular cells, leading to tubulointerstitial fibrosis (TIF), which is involved in the pathogenesis of HTN. G protein-coupled receptors (GPCRs) are implicated in many important pathological and physiological processes and act as important drug targets. In this study, we explored the intrarenal mechanisms underlying hypertension-associated TIF, and particularly, the potential role of GPR97, a member of the adhesion GPCR subfamily, in TIF. A deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mouse model was used. We revealed a significantly upregulated expression of GPR97 in the kidneys, especially in renal tubules, of the hypertensive mice and 10 patients with biopsy-proven hypertensive kidney injury. GPR97−/− mice showed markedly elevated blood pressure, which was comparable to that of wild-type mice following DOCA/salt treatment, but dramatically ameliorated renal injury and TIF. In NRK-52E cells, we demonstrated that knockdown of GPR97 suppressed the activation of TGF-β signaling by disturbing small GTPase RhoA-mediated cytoskeletal reorganization, thus inhibiting clathrin-mediated endocytosis of TGF-β receptors and subsequent Smad activation. Collectively, this study demonstrates that GPR97 contributes to hypertension-associated TIF at least in part by facilitating TGF-β signaling, suggesting that GPR97 is a pivotal intrarenal factor for TIF progression under hypertensive conditions, and therapeutic strategies targeting GPR97 may improve the outcomes of patients with HTN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The level of GPR97 was significantly upregulated in the kidneys of DOCA/salt-induced hypertensive mice.
Fig. 2: GPR97 deficiency ameliorated kidney injury and tubulointerstitial fibrosis in DOCA/salt-induced hypertensive mice.
Fig. 3: GPR97 silencing attenuated the TGF-β1-induced fibrotic phenotype of NRK-52E cells.
Fig. 4: GPR97 participated in the activation of TGF-β/Smad signaling in tubule epithelial cells.
Fig. 5: GPR97 silencing reduced clathrin-mediated TβRII endocytosis in TGF-β1-treated NRK-52E cells.
Fig. 6: GPR97 modulates the activity of RhoA, which participates in the activation of the TGF-β1 signaling pathway.
Fig. 7: Schematic depicting GPR97 as a novel regulator of TGF-β signaling.

Similar content being viewed by others

References

  1. Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Lancet. 2015;386:801–12.

    Article  PubMed  Google Scholar 

  2. Kakitapalli Y, Ampolu J, Madasu SD, Sai Kumar MLS. Detailed review of chronic kidney disease. Kidney Dis (Basel). 2020;6:85–91.

    Article  PubMed  Google Scholar 

  3. Udani S, Lazich I, Bakris GL. Epidemiology of hypertensive kidney disease. Nat Rev Nephrol. 2011;7:11–21.

    Article  PubMed  Google Scholar 

  4. Wright JT Jr., Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288:2421–31.

    Article  CAS  PubMed  Google Scholar 

  5. Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-Iordache B, Turturro M, et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005;365:939–46.

    Article  PubMed  Google Scholar 

  6. Ku E, Glidden DV, Johansen KL, Sarnak M, Tighiouart H, Grimes B, et al. Association between strict blood pressure control during chronic kidney disease and lower mortality after onset of end-stage renal disease. Kidney Int. 2015;87:1055–60.

    Article  PubMed  Google Scholar 

  7. Vieira-Rocha MS, Sousa JB, Rodriguez-Rodriguez P, Morato M, Arribas SM, Diniz C. Insights into sympathetic nervous system and GPCR interplay in fetal programming of hypertension: a bridge for new pharmacological strategies. Drug Discov Today. 2020;25:739–47.

    Article  PubMed  Google Scholar 

  8. Brinks HL, Eckhart AD. Regulation of GPCR signaling in hypertension. Biochim Biophys Acta. 2010;1802:1268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cui X, Shi E, Li J, Li Y, Qiao Z, Wang Z, et al. GPR87 promotes renal tubulointerstitial fibrosis by accelerating glycolysis and mitochondrial injury. Free Radic Biol Med. 2022;189:58–70.

    Article  CAS  PubMed  Google Scholar 

  10. Yona S, Lin HH, Siu WO, Gordon S, Stacey M. Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci. 2008;33:491–500.

    Article  CAS  PubMed  Google Scholar 

  11. Valtcheva N, Primorac A, Jurisic G, Hollmen M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem. 2013;288:35736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang JJ, Zhang LL, Zhang HX, Shen CL, Lu SY, Kuang Y, et al. Gpr97 is essential for the follicular versus marginal zone B-lymphocyte fate decision. Cell Death Dis. 2013;4:e853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Causton B, Ramadas RA, Cho JL, Jones K, Pardo-Saganta A, Rajagopal J, et al. CARMA3 Is critical for the initiation of allergic airway inflammation. J Immunol. 2015;195:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zugasti O, Bose N, Squiban B, Belougne J, Kurz CL, Schroeder FC, et al. Activation of a G protein-coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat Immunol. 2014;15:833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang W, Wang Z, Li Q, Wang X, Zhang Y, Sun Y, et al. Gpr97 Exacerbates AKI by Mediating Sema3A Signaling. J Am Soc Nephrol. 2018;29:1475–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol. 2017;313:H524–H45.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Caroccia B, Seccia TM, Barton M, Rossi GP. Estrogen signaling in the adrenal cortex: implications for blood pressure sex differences. Hypertension. 2016;68:840–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ma MM, Gao M, Guo KM, Wang M, Li XY, Zeng XL, et al. Estrogen signaling in the adrenal cortex: implications for blood pressure sex differences. Hypertension. 2017;69:892–901.

    Article  CAS  PubMed  Google Scholar 

  19. Yi F, Zhang AY, Janscha JL, Li PL, Zou AP. Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int. 2004;66:1977–87.

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Guan J, Hou Y, Xue F, Huang W, Zhang W, et al. Silencing of junctional adhesion molecule-like protein attenuates atherogenesis and enhances plaque stability in ApoE(-/-) mice. Clin Sci. 2019;133:1215–28.

    Article  CAS  Google Scholar 

  21. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem. 2003;278:21113–23.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao B, Chen YG. Regulation of TGF-beta signal transduction. Sci (Cairo). 2014;2014:874065.

    Google Scholar 

  23. Loebrich S. The role of F-actin in modulating Clathrin-mediated endocytosis: Lessons from neurons in health and neuropsychiatric disorder. Commun Integr Biol. 2014;7:e28740.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol. 1994;10:31–54.

    Article  CAS  PubMed  Google Scholar 

  25. Kim JG, Islam R, Cho JY, Jeong H, Cap KC, Park Y, et al. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J Cell Physiol. 2018;233:6381–92.

    Article  CAS  PubMed  Google Scholar 

  26. Tumbarello DA, Turner CE. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol. 2007;211:736–47.

    Article  CAS  PubMed  Google Scholar 

  27. Raina R, Chauvin A, Chakraborty R, Nair N, Shah H, Krishnappa V, et al. The Role of Endothelin and Endothelin Antagonists in Chronic Kidney Disease. Kidney Dis. 2020;6:22–34.

    Article  Google Scholar 

  28. Seccia TM, Caroccia B, Calo LA. Hypertensive nephropathy. Moving from classic to emerging pathogenetic mechanisms. J Hypertens. 2017;35:205–12.

    Article  CAS  PubMed  Google Scholar 

  29. Costantino VV, Gil Lorenzo AF, Bocanegra V, Valles PG. Molecular mechanisms of hypertensive nephropathy: renoprotective effect of losartan through Hsp70. Cells. 2021;10:3146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 signaling enhances CXCR4-driven Rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1alpha. Mol Cell Biol. 2016;36:2011–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Recchia AG, De Francesco EM, Vivacqua A, Sisci D, Panno ML, Ando S, et al. The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes. J Biol Chem. 2011;286:10773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Welch WJ, Baumgartl H, Lubbers D, Wilcox CS. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 2001;59:230–7.

    Article  CAS  PubMed  Google Scholar 

  33. Palm F, Onozato M, Welch WJ, Wilcox CS. Blood pressure, blood flow, and oxygenation in the clipped kidney of chronic 2-kidney, 1-clip rats: effects of tempol and angiotensin blockade. Hypertension. 2010;55:298–304.

    Article  CAS  PubMed  Google Scholar 

  34. Welch WJ. Intrarenal oxygen and hypertension. Clin Exp Pharm Physiol. 2006;33:1002–5.

    Article  CAS  Google Scholar 

  35. Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol. 2011;38:474–80.

    Article  PubMed  Google Scholar 

  36. Rozen-Zvi B, Hayashida T, Hubchak SC, Hanna C, Platanias LC, Schnaper HW. TGF-beta/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1alpha expression. Am J Physiol Ren Physiol. 2013;305:F485–94.

    Article  CAS  Google Scholar 

  37. Gewin L. The many talents of transforming growth factor-beta in the kidney. Curr Opin Nephrol Hypertens. 2019;28:203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan Y, Wang J, Chaudhry MA, Nie Y, Sun S, Carmon J, et al. Metabolic syndrome and salt-sensitive hypertension in polygenic obese TALLYHO/JngJ mice: role of Na/K-ATPase signaling. Int J Mol Sci. 2019;20:3495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao J, Hou R, Lu J, Zhang K, Zhao C, Jiang H, et al. The predictive value of beta2-MG and TGF-beta for elderly hypertensive nephropathy. Exp Ther Med. 2019;17:3065–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen YG. Endocytic regulation of TGF-beta signaling. Cell Res. 2009;19:58–70.

    Article  PubMed  Google Scholar 

  41. Mitchell H, Choudhury A, Pagano RE, Leof EB. Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell. 2004;15:4166–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yarar D, Waterman-Storer CM, Schmid SL. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell. 2005;16:964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA. 2012;109:E2441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng F, Zhang B, Wu D, Ingram AJ, Gao B, Krepinsky JC. TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Ren Physiol. 2008;295:F153–64.

    Article  CAS  Google Scholar 

  45. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem. 2008;283:14469–78.

    Article  CAS  PubMed  Google Scholar 

  46. Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X. Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett. 2012;586:1214–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ping YQ, Mao C, Xiao P, Zhao RJ, Jiang Y, Yang Z, et al. Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex. Nature. 2021;589:620–6.

    Article  CAS  PubMed  Google Scholar 

  48. Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 1996;15:510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2020YFC2005000); the National Natural Science Foundation of China (82090024 to FY, 91949202 to FY, 82270718 to WT, 81970580 to WT, 81800643 to JCW, 82170734 to XJW, 81800645 to ML); and the Shandong Provincial Natural Science Foundation (ZR2019ZD40 to FY, ZR202102240178 to XJW).

Author information

Authors and Affiliations

Authors

Contributions

FY, WT and XJW conceived and designed the research. JCW, JHZ, XYH and ZQ performed the research and acquired the data. ML, YZ, YS, PZ, HLH, TZ, HL, and ZYW analyzed and interpreted the data. All authors were involved in drafting and revising the manuscript.

Corresponding authors

Correspondence to Wei Tang or Fan Yi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Jc., Wang, Xj., Zhu, Jh. et al. GPR97 deficiency ameliorates renal interstitial fibrosis in mouse hypertensive nephropathy. Acta Pharmacol Sin 44, 1206–1216 (2023). https://doi.org/10.1038/s41401-022-01041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-022-01041-y

Keywords

Search

Quick links