Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of HSPA1B genotypes with psychopathology and neurocognition in patients with the first episode of psychosis: a longitudinal 18-month follow-up study

Abstract

Our aim was to analyze the association of HSPA1B genotypes and treatment response measured by the changes of psychopathology and neurocognitive symptoms in patients with first-episode psychosis (FEP) after 18 months of treatment. A sample of 159 patients with FEP admitted at two Croatian psychiatric hospitals in the period between year 2014 and year 2017 was assessed at baseline and after 18 months of follow-up with Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale for Schizophrenia (CDSS) and a battery of neurocognitive tests. Associations of scale and test results with HSPA1B polymorphic locus rs1061581 were analyzed using the general linear model. The carriers of the AA genotype showed the highest improvement in CDSS and RAVLT A test after the 18-month follow-up. Concordantly, we found significantly higher improvement assessed with the CDSS, RAVLT A, RAVLT A 30′ and positive PANSS scales in the not-GG (AA/AG) group compared with the GG group. Our study suggests that HSPA1B rs1061581variants may moderate treatment response in FEP measured with changes of psychopathology and neurocognitive test results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76. http://www.ncbi.nlm.nih.gov/pubmed/18480098.

    Article  PubMed  Google Scholar 

  2. Milner CM, Campbell RD. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics. 1990;32:242–51. http://www.ncbi.nlm.nih.gov/pubmed/1700760.

    Article  CAS  PubMed  Google Scholar 

  3. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52. http://www.ncbi.nlm.nih.gov/pubmed/19571811.

    Article  PubMed Central  CAS  Google Scholar 

  4. Bergen SE, O’Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S, et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry. 2012;17:880–6. http://www.ncbi.nlm.nih.gov/pubmed/22688191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Jong S, van Eijk KR, Zeegers DWLH, Strengman E, Janson E, Veldink JH, et al. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur J Hum Genet. 2012;20:1004–8. http://www.ncbi.nlm.nih.gov/pubmed/22433715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jia P, Wang L, Fanous AH, Chen X, Kendler KS, International Schizophrenia Consortium. et al. A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. J Med Genet. 2012;49:96–103. http://www.ncbi.nlm.nih.gov/pubmed/22187495.

    Article  CAS  PubMed  Google Scholar 

  7. Gardiner EJ, Cairns MJ, Liu B, Beveridge NJ, Carr V, Kelly B, et al. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res. 2013;47:425–37. http://www.ncbi.nlm.nih.gov/pubmed/23218666.

    Article  PubMed  Google Scholar 

  8. Mehta D, Klengel T, Conneely KN, Smith AK, Altmann A, Pace TW, et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci USA. 2013;110:8302–7. http://www.ncbi.nlm.nih.gov/pubmed/23630272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Danese A, Moffitt TE, Pariante CM, Ambler A, Poulton R, Caspi A. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry. 2008;65:409–15. http://www.ncbi.nlm.nih.gov/pubmed/18391129.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M. A new schizophrenia model: immune activation is associated with the induction of different neurotoxic products which together determine memory impairments and schizophrenia symptom dimensions. CNS Neurol Disord Drug Targets. 2019;18:124–40. http://www.ncbi.nlm.nih.gov/pubmed/30451122.

    Article  CAS  PubMed  Google Scholar 

  11. Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF. In Schizophrenia, deficits in Natural IgM isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol Neurobiol. 2018;56:5122–35. http://www.ncbi.nlm.nih.gov/pubmed/30484113.

  12. Kowalczyk M, Owczarek A, Suchanek R, Paul-Samojedny M, Fila-Danilow A, Borkowska P, et al. Heat shock protein 70 gene polymorphisms are associated with paranoid schizophrenia in the Polish population. Cell Stress Chaperones. 2014;19:205–15. http://www.ncbi.nlm.nih.gov/pubmed/23893339.

    Article  CAS  PubMed  Google Scholar 

  13. Benarroch EE. Heat shock proteins: multiple neuroprotective functions and implications for neurologic disease. Neurology. 2011;76:660–7. http://www.ncbi.nlm.nih.gov/pubmed/21321339.

    Article  PubMed  Google Scholar 

  14. Bates PR, Hawkins A, Mahadik SP, McGrath JJ. Heat stress lipids and schizophrenia. Prostaglandins Leukot Ess Fat Acids. 1996;55:101–7. http://www.ncbi.nlm.nih.gov/pubmed/8888131.

    Article  CAS  Google Scholar 

  15. Kim JJ, Lee SJ, Toh KY, Lee CU, Lee C, Paik IH. Identification of antibodies to heat shock proteins 90 kDa and 70 kDa in patients with schizophrenia. Schizophr Res. 2001;52:127–35. http://www.ncbi.nlm.nih.gov/pubmed/11595400.

    Article  CAS  PubMed  Google Scholar 

  16. Pae C-U, Kim T-S, Kwon O-J, Artioli P, Serretti A, Lee C-U, et al. Polymorphisms of heat shock protein 70 gene (HSPA1A, HSPA1B and HSPA1L) and schizophrenia. Neurosci Res. 2005;53:8–13. http://www.ncbi.nlm.nih.gov/pubmed/15963589.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JJ, Mandelli L, Lim S, Lim HK, Kwon OJ, Pae CU, et al. Association analysis of heat shock protein 70 gene polymorphisms in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2008;258:239–44. http://www.ncbi.nlm.nih.gov/pubmed/18299791.

    Article  PubMed  Google Scholar 

  18. Pae C-U, Drago A, Kim J-J, Mandelli L, De Ronchi D, Serretti A. The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients. Neuropsychobiology. 2009;59:135–41. http://www.ncbi.nlm.nih.gov/pubmed/19439993.

    Article  CAS  PubMed  Google Scholar 

  19. POCIOT F, RØNNINGEN KS, NERUP J. Polymorphic analysis of the human MHC-linked heat shock protein 70 (HSP70-2) and HSP70-hom genes in insulin-dependent diabetes mellitus (IDDM). Scand J Immunol. 1993;38:491–5.

    Article  CAS  PubMed  Google Scholar 

  20. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.

    Google Scholar 

  21. Rojnic Kuzman M, Makaric P, Bosnjak Kuharic D, Kekin I, Rossini Gajsak L, Boban M, et al. Integration of complementary biomarkers in patients with first episode psychosis: research protocol of a prospective follow up study. Psychiatr Danub. 2019;31:162–71. http://www.psychiatria-danubina.com/UserDocsImages/pdf/dnb_vol31_no2/dnb_vol31_no2_162.pdf.

  22. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc. 2013;310:2191–4.

    Article  CAS  Google Scholar 

  23. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    Article  CAS  PubMed  Google Scholar 

  24. Addington D, Addington J, Schissel B. A depression rating scale for schizophrenics. Schizophr Res. 3:247–51.

  25. Schmidt, M Los Angeles CWPS. Rey auditory verbal learning test: a handbook. Los Angeles: CA: Western Psychological Services; 1996.

    Google Scholar 

  26. Wechsler D. Wechslermemoryscale. San Antonio, TX, US: Psychological Corporation; 1945.

    Google Scholar 

  27. Lichtenberger EO, Kaufman AS. Essentials of WAIS-IV assessment. New Jersey: John Wiley & Sons; 2009.

    Google Scholar 

  28. Hutt ML. The Kohsblock-design tests. A revision for clinicalpractice. J Appl Psychol. 1932;16:298.

    Article  Google Scholar 

  29. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a frontal assessment battery at bedside. Neurology 2000;55:1621–6.

    Article  CAS  PubMed  Google Scholar 

  30. Freedman M, Leach L, Kaplan E, Winocur G, Shulman K, Delis DC. Clock drawing: a neuropsychological analysis. Oxford University Press; Oxford, UK, 1994.

  31. Golden CJ. Identification of brain disorders by the Stroop Color and Word Test. J Clin Psychol. 1976;32:654–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tombaugh TN. Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19:203–14.

    Article  PubMed  Google Scholar 

  33. Fastenau PS, Denburg NL, Hufford BJ. Adult norms for the Rey-Osterrieth Complex Figure Test and for supplemental recognition and matching trials from the Extended Complex Figure Test. Clin Neuropsychol. 1999;13:30–47.

    Article  CAS  PubMed  Google Scholar 

  34. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  35. Bosnjak Kuharic D, Makaric P, Kekin I, Bajic Z, Zivkovic M, Savic A, et al. Neurocognitive profiles of patients with the first episode of psychosis and schizophrenia do not differ qualitatively: a nested cross-sectional study. Psychiatr Danub. 2019;31:43–53. http://www.psychiatria-danubina.com/UserDocsImages/pdf/dnb_vol31_no1/dnb_vol31_no1_43.pdf.

    Article  PubMed  Google Scholar 

  36. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60. http://www.ncbi.nlm.nih.gov/pubmed/19897823.

    Article  PubMed  Google Scholar 

  37. Python Software Foundation. Python Language Reference. Available at https://www.python.org/.

  38. Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992;48:361–72. http://www.ncbi.nlm.nih.gov/pubmed/1637966.

    Article  CAS  PubMed  Google Scholar 

  39. Rousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8:103–6. http://www.ncbi.nlm.nih.gov/pubmed/21585727.

    Article  PubMed  Google Scholar 

  40. Zhang Z, Zhang R, Qin P, Tan L. Cognitive dysfunction and negative symptoms in patients with schizophrenia and their first-degree relatives from simplex and multiplex families. Neuropsychiatr Dis Treat. 2018;14:3339–48. http://www.ncbi.nlm.nih.gov/pubmed/30584307.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maynard TM, Sikich L, Lieberman JA, LaMantia AS. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull. 2001;27:457–76. http://www.ncbi.nlm.nih.gov/pubmed/11596847.

    Article  CAS  PubMed  Google Scholar 

  42. Trovão N, Prata J, VonDoellinger O, Santos S, Barbosa M, Coelho R. Peripheral biomarkers for first-episode psychosis-opportunities from the neuroinflammatory hypothesis of schizophrenia. Psychiatry Investig. 2019;16:177–84. http://www.ncbi.nlm.nih.gov/pubmed/30836740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci. 2009;3:14. http://www.ncbi.nlm.nih.gov/pubmed/19738918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gomes FV, Grace AA. Adolescent stress as a driving factor for schizophrenia development-a basic science Perspective. Schizophr Bull. 2017;43:486–9. http://www.ncbi.nlm.nih.gov/pubmed/28419390.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Corcoran C, Mujica-Parodi L, Yale S, Leitman D, Malaspina D. Could stress cause psychosis in individuals vulnerable to schizophrenia? CNS Spectr. 2002;7:33–8. http://www.ncbi.nlm.nih.gov/pubmed/15254447.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, et al. Increased stress-induced dopamine release in psychosis. Biol Psychiatry. 2012;71:561–7. http://www.ncbi.nlm.nih.gov/pubmed/22133268.

    Article  CAS  PubMed  Google Scholar 

  47. Singh R, Kolvraa S, Bross P, Christensen K, Bathum L, Gregersen N, et al. Anti-inflammatory heat shock protein 70 genes are positively associated with human survival. Curr Pharm Des. 2010;16:796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009;23:315–36.

    Article  PubMed  Google Scholar 

  49. Henry JD, Crawford JR. A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cogn Neuropsychiatry. 2005;10:1–33. http://www.ncbi.nlm.nih.gov/pubmed/16571449.

    Article  PubMed  Google Scholar 

  50. Vakil E, Blachstein H. Rey auditory-verbal learning test: structure analysis. J Clin Psychol. 1993;49:883–90. http://www.ncbi.nlm.nih.gov/pubmed/8300877.

    Article  CAS  PubMed  Google Scholar 

  51. Khosravi Fard E, L Keelor J, Akbarzadeh Bagheban A, W Keith R. Comparison of the Rey Auditory Verbal Learning Test (RAVLT) and digit test among typically achieving and gifted students. Iran J child Neurol. 2016;10:26–37. http://www.ncbi.nlm.nih.gov/pubmed/27247581.

    PubMed  PubMed Central  Google Scholar 

  52. Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Purcell S, et al. Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. Schizophr Res. 2007;92:181–8. http://www.ncbi.nlm.nih.gov/pubmed/17344026.

    Article  PubMed  Google Scholar 

  53. Joober R, Benkelfat C, Lal S, Bloom D, Labelle A, Lalonde P, et al. Association between the methylenetetrahydrofolate reductase 677C–>T missense mutation and schizophrenia. Mol Psychiatry. 2000;5:323–6. http://www.ncbi.nlm.nih.gov/pubmed/10889537.

    Article  CAS  PubMed  Google Scholar 

  54. Schwarz MJ, Riedel M, Gruber R, Ackenheil M, Müller N. Antibodies to heat shock proteins in schizophrenic patients: implications for the mechanism of the disease. Am J Psychiatry. 1999;156:1103–4. http://www.ncbi.nlm.nih.gov/pubmed/1040146.

    CAS  PubMed  Google Scholar 

  55. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995;52:998–1007. http://www.ncbi.nlm.nih.gov/pubmed/7492260.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Croatian Science Foundation No. UIP‐2014‐09‐1245 Biomarkers in schizophrenia—integration of complementary methods in longitudinal follow-up of FEP patients supported this study by the research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Rojnic Kuzman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosnjak Kuharic, D., Bozina, N., Ganoci, L. et al. Association of HSPA1B genotypes with psychopathology and neurocognition in patients with the first episode of psychosis: a longitudinal 18-month follow-up study. Pharmacogenomics J 20, 638–646 (2020). https://doi.org/10.1038/s41397-020-0150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-020-0150-9

Search

Quick links