Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multimodal study of a first episode psychosis cohort: potential markers of antipsychotic treatment resistance

Abstract

Treatment resistant (TR) psychosis is considered to be a significant cause of disability and functional impairment. Numerous efforts have been made to identify the clinical predictors of TR. However, the exploration of molecular and biological markers is still at an early stage. To understand the TR condition and identify potential molecular and biological markers, we analyzed demographic information, clinical data, structural brain imaging data, and molecular brain imaging data in 7 Tesla magnetic resonance spectroscopy from a first episode psychosis cohort that includes 136 patients. Age, gender, race, smoking status, duration of illness, and antipsychotic dosages were controlled in the analyses. We found that TR patients had a younger age at onset, more hospitalizations, more severe negative symptoms, a reduction in the volumes of the hippocampus (HP) and superior frontal gyrus (SFG), and a reduction in glutathione (GSH) levels in the anterior cingulate cortex (ACC), when compared to non-TR patients. The combination of multiple markers provided a better classification between TR and non-TR patients compared to any individual marker. Our study shows that ACC-GSH, HP and SFG volumes, and age at onset, could potentially be biomarkers for TR diagnosis, while hospitalization and negative symptoms could be used to evaluate the progression of the disease. Multimodal cohorts are essential in obtaining a comprehensive understanding of brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Box plots of glutathione (GSH) levels (water reference) in treatment resistant (TR) and non-TR patients.
Fig. 2: Classification models of treatment resistant (TR) and non-TR patients.

Similar content being viewed by others

References

  1. Secher RG, Hjorthøj CR, Austin SF, Thorup A, Jeppesen P, Mors O, et al. Ten-year follow-up of the OPUS specialized early intervention trial for patients with a first episode of psychosis. Schizophr Bull. 2015;41:617–26.

    Article  PubMed  Google Scholar 

  2. Nucifora FC, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2018;131:104257.

  3. Wimberley T, Støvring H, Sørensen HJ, Horsdal HT, MacCabe JH, Gasse C. Predictors of treatment resistance in patients with schizophrenia: a population-based cohort study. Lancet Psychiatry. 2016;3:358–66.

    Article  PubMed  Google Scholar 

  4. Lally J, Ajnakina O, Di Forti M, Trotta A, Demjaha A, Kolliakou A, et al. Two distinct patterns of treatment resistance: clinical predictors of treatment resistance in first-episode schizophrenia spectrum psychoses. Psychol Med. 2016;46:3231–40.

    Article  CAS  PubMed  Google Scholar 

  5. Nucifora FC, Mihaljevic M, Lee BJ, Sawa A. Clozapine as a model for antipsychotic development. Neurotherapeutics 2017;14:750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Legge SE, Hamshere ML, Ripke S, Pardinas AF, Goldstein JI, Rees E, et al. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Mol Psychiatry. 2018;23:162–3.

    Article  CAS  PubMed  Google Scholar 

  7. Kinon BJ. The group of treatment resistant schizophrenias. Heterogeneity in Treatment Resistant Schizophrenia (TRS). Front Psychiatry. 2018;9:757.

    Article  PubMed  Google Scholar 

  8. Shah P, Iwata Y, Plitman E, Brown EE, Caravaggio F, Kim J, et al. The impact of delay in clozapine initiation on treatment outcomes in patients with treatment-resistant schizophrenia: a systematic review. Psychiatry Res. 2018;268:114–22.

    Article  CAS  PubMed  Google Scholar 

  9. Kayo M, Tassell I, Hiroce V, Menezes A, Elkis H. Does lack of improvement in the first two weeks predict treatment resistance in recent-onset psychosis? Clin (Sao Paulo) 2012;67:1479–82.

    Article  Google Scholar 

  10. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJM, Birnbaum ML, et al. Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2017;174:216–29.

    Article  PubMed  Google Scholar 

  11. Demjaha A, Lappin JM, Stahl D, Patel MX, MacCabe JH, Howes OD, et al. Antipsychotic treatment resistance in first-episode psychosis: prevalence, subtypes and predictors. Psychol Med. 2017;47:1981–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fusar-Poli P, Rutigliano G, Stahl D, Davies C, Bonoldi I, Reilly T, et al. Development and validation of a clinically based risk calculator for the transdiagnostic prediction of psychosis. JAMA Psychiatry. 2017;74:493–500.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanahara N, Yamanaka H, Suzuki T, Takase M, Iyo M. First-episode psychosis in treatment-resistant schizophrenia: a cross-sectional study of a long-term follow-up cohort. BMC Psychiatry. 2018;18:274.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kowalec K, Lu Y, Sariaslan A, Song J, Ploner A, Dalman C, et al. Increased schizophrenia family history burden and reduced premorbid IQ in treatment-resistant schizophrenia: a Swedish national register and genomic study. Mol Psychiatry. 2019:1–9. https://doi.org/10.1038/s41380-019-0575-1.

  15. Frydecka D, Beszłej JA, Gościmski P, Kiejna A, Misiak B. Profiling cognitive impairment in treatment-resistant schizophrenia patients. Psychiatry Res. 2016;235:133–8.

    Article  PubMed  Google Scholar 

  16. Palaniyappan L, Marques TR, Taylor H, Handley R, Mondelli V, Bonaccorso S, et al. Cortical folding defects as markers of poor treatment response in first-episode psychosis. JAMA Psychiatry. 2013;70:1031–40.

    Article  PubMed  Google Scholar 

  17. Mondelli V, Ciufolini S, Belvederi Murri M, Bonaccorso S, Di Forti M, Giordano A, et al. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr Bull. 2015;41:1162–70.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Egerton A, Broberg BV, Van Haren N, Merritt K, Barker GJ, Lythgoe DJ, et al. Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: a multicentre 1H-MRS study (OPTiMiSE). Mol Psychiatry. 2018;23:2145–55.

    Article  CAS  PubMed  Google Scholar 

  19. Egerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK, et al. Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology 2012;37:2515–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75:e11–13.

    Article  CAS  PubMed  Google Scholar 

  21. Jauhar S, Veronese M, Nour MM, Rogdaki M, Hathway P, Turkheimer FE, et al. Determinants of treatment response in first-episode psychosis: an 18F-DOPA PET study. Mol Psychiatry. 2019;24:1502–12.

    Article  PubMed  Google Scholar 

  22. Kim E, Howes OD, Veronese M, Beck K, Seo S, Park JW, et al. Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18F]DOPA PET Study. Neuropsychopharmacology 2017;42:941–50.

    Article  CAS  PubMed  Google Scholar 

  23. Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, et al. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry. 2011;168:1311–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dempster K, Jeon P, MacKinley M, Williamson P, Théberge J, Palaniyappan L. Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol Psychiatry. 2020;25:1640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kochunov P, Huang J, Chen S, Li Y, Tan S, Fan F, et al. White matter in schizophrenia treatment resistance. Am J Psychiatry. 2019;176:829–38.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Blessing EM, Murty VP, Zeng B, Wang J, Davachi L, Goff DC. Anterior hippocampal-cortical functional connectivity distinguishes antipsychotic naïve first-episode psychosis patients from controls and may predict response to second-generation antipsychotic treatment. Schizophr Bull. 2019;46:680–9.

    Article  PubMed Central  Google Scholar 

  27. Wang AM, Pradhan S, Coughlin JM, Trivedi A, DuBois SL, Crawford JL, et al. Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychiatry. 2019;76:314–23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kamath V, Lasutschinkow P, Ishizuka K, Sawa A. Olfactory functioning in first-episode psychosis. Schizophr Bull. 2018;44:672–80.

    Article  PubMed  Google Scholar 

  29. Faria AV, Crawford J, Ye C, Hsu J, Kenkare A, Schretlen D, et al. Relationship between neuropsychological behavior and brain white matter in first-episode psychosis. Schizophr Res. 2019;208:49–54.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Posporelis S, Coughlin JM, Marsman A, Pradhan S, Tanaka T, Wang H, et al. Decoupling of brain temperature and glutamate in recent onset of schizophrenia: a 7T proton magnetic resonance spectroscopy study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:248–54.

    PubMed  Google Scholar 

  31. Kamath V, Crawford J, DuBois S, Nucifora FC, Nestadt G, Sawa A, et al. Contributions of olfactory and neuropsychological assessment to the diagnosis of first-episode schizophrenia. Neuropsychology 2019;33:203–11.

    Article  PubMed  Google Scholar 

  32. Good KP, Tibbo P, Milliken H, Whitehorn D, Alexiadis M, Robertson N, et al. An investigation of a possible relationship between olfactory identification deficits at first episode and four-year outcomes in patients with psychosis. Schizophr Res 2010;124:60–5.

    Article  PubMed  Google Scholar 

  33. Kästner A, Malzahn D, Begemann M, Hilmes C, Bickeböller H, Ehrenreich H. Odor naming and interpretation performance in 881 schizophrenia subjects: association with clinical parameters. BMC Psychiatry. 2013;13:218.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. Lancet Psychiatry. 2018;5:885–94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koshiyama D, Kirihara K, Tada M, Nagai T, Fujioka M, Ichikawa E, et al. Electrophysiological evidence for abnormal glutamate-GABA association following psychosis onset. Transl Psychiatry. 2018;8:1–10.

    Article  CAS  Google Scholar 

  36. Lesh TA, Maddock RJ, Howell A, Wang H, Tanase C, Daniel Ragland J, et al. Extracellular free water and glutathione in first-episode psychosis-a multimodal investigation of an inflammatory model for psychosis. Mol Psychiatry. 2021;26:761–71.

    Article  PubMed  Google Scholar 

  37. Kim S, Shin SH, Santangelo B, Veronese M, Kang SK, Lee JS, et al. Dopamine dysregulation in psychotic relapse after antipsychotic discontinuation: an [18F]DOPA and [11C]raclopride PET study in first-episode psychosis. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00879-0.

  38. Galderisi S, Davidson M, Kahn RS, Mucci A, Boter H, Gheorghe MD, et al. Correlates of cognitive impairment in first episode schizophrenia: the EUFEST study. Schizophr Res. 2009;115:104–14.

    Article  PubMed  Google Scholar 

  39. Wilson RS, Yung AR, Morrison AP. Comorbidity rates of depression and anxiety in first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2020;216:322–9.

    Article  PubMed  Google Scholar 

  40. Andreasen NC, Flaum M, Arndt S, Alliger R, Swayze VW. Positive and negative symptoms: assessment and validity. In: Marneros A, Andreasen NC, Tsuang MT, editors. Negative Versus Positive Schizophrenia, Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 28–51.

  41. Testa SM, Winicki JM, Pearlson GD, Gordon B, Schretlen DJ. Accounting for estimated IQ in neuropsychological test performance with regression-based techniques. J Int Neuropsychol Soc. 2009;15:1012–22.

    Article  PubMed  Google Scholar 

  42. Schretlen DJ, Vannorsdall TD, Winicki JM, Mushtaq Y, Hikida T, Sawa A, et al. Neuroanatomic and cognitive abnormalities related to herpes simplex virus type 1 in schizophrenia. Schizophr Res. 2010;118:224–31.

    Article  PubMed  Google Scholar 

  43. Schretlen DJ, Cascella NG, Meyer SM, Kingery LR, Testa SM, Munro CA, et al. Neuropsychological functioning in bipolar disorder and schizophrenia. Biol Psychiatry. 2007;62:179–86.

    Article  PubMed  Google Scholar 

  44. Reid MA, Salibi N, White DM, Gawne TJ, Denney TS, Lahti AC. 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia. Schizophr Bull. 2019;45:180–9.

    Article  PubMed  Google Scholar 

  45. Mori S, Wu D, Ceritoglu C, Li Y, Kolasny A, Vaillant MA, et al. MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service. Comput Sci Eng. 2016;18:21–35.

    Article  Google Scholar 

  46. Tang X, Oishi K, Faria AV, Hillis AE, Albert MS, Mori S, et al. Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model. PLoS One. 2013. https://doi.org/10.1371/journal.pone.0065591.

  47. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 2009;46:486–99.

    Article  PubMed  Google Scholar 

  48. Leucht S, Samara M, Heres S, Davis JM. Dose equivalents for antipsychotic drugs: the DDD method. Schizophr Bull. 2016;42:S90–94. Suppl 1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haijma SV, Van Haren N, Cahn W, Koolschijn PCMP, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18000 subjects. Schizophr Bull. 2013;39:1129–38.

    Article  PubMed  Google Scholar 

  50. van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547–53.

    Article  PubMed  Google Scholar 

  51. Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, et al. Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry. 2002;59:1002–10.

    Article  PubMed  Google Scholar 

  52. Wang M, Barker PB, Cascella N, Coughlin JM, Nestadt G, Nucifora FC, et al. Longitudinal changes in brain metabolites in healthy subjects and patients with first episode psychosis (FEP): a 7-Tesla MRS study. BioRxiv. 2020. https://doi.org/10.1101/2020.08.25.267419.

  53. Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO, et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry. 2004;161:1–56.

    PubMed  Google Scholar 

  54. Camm JA, Lüscher TF, Serruys PW. The ESC textbook of cardiovascular medicine. 6th ed. Oxford: Oxford University Press; 2009.

  55. Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry. 2020;10:1–28.

    Article  Google Scholar 

  56. Immonen J, Jääskeläinen E, Korpela H, Miettunen J. Age at onset and the outcomes of schizophrenia: a systematic review and meta‐analysis. Early Inter Psychiatry. 2017;11:453–60.

    Article  Google Scholar 

  57. Bozzatello P, Bellino S, Rocca P Predictive factors of treatment resistance in first episode of psychosis: a systematic review. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2019.00067.

  58. Briend F, Nelson EA, Maximo O, Armstrong WP, Kraguljac NV, Lahti AC. Hippocampal glutamate and hippocampus subfield volumes in antipsychotic-naive first episode psychosis subjects and relationships to duration of untreated psychosis. Transl Psychiatry. 2020;10:1–11.

    Article  CAS  Google Scholar 

  59. Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018;23:1764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Catts VS, Sheedy D, McCrossin T, Kril JJ, Shannon, et al. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl Psychiatry. 2016;6:e982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fusar-Poli P, Crossley N, Woolley J, Carletti F, Perez-Iglesias R, Broome M, et al. White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: an MRI-EEG study. J Psychiatry Neurosci. 2011;36:239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sedlak TW, Paul BD, Parker GM, Hester LD, Snowman AM, Taniguchi Y, et al. The glutathione cycle shapes synaptic glutamate activity. Proc Natl Acad Sci USA. 2019;116:2701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry. 2016;21:10–28.

    Article  CAS  PubMed  Google Scholar 

  64. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14:417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ravishankar M, Morris A, Burgess A, Khatib D, Stanley JA, Diwadkar VA. Cortical-hippocampal functional connectivity during covert consolidation sub-serves associative learning: evidence for an active ‘rest’ state. Brain Cogn. 2019;131:45–55.

    Article  PubMed  Google Scholar 

  66. Cascella NG, Fieldstone SC, Rao VA, Pearlson GD, Sawa A, Schretlen DJ. Gray-matter abnormalities in deficit schizophrenia. Schizophr Res. 2010;120:63–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Institutes of Mental Health Grants MH-092443 (to AS), MH-094268 (to AS), MH-105660 (to AS), and MH-107730 (to AS); foundation grants from Stanley (to AS), RUSK/S-R (to AS), and a NARSAD young investigator award from Brain and Behavior Research Foundation (to AS, KY). The original recruitment of study participants was partly funded by the Mitsubishi Tanabe Pharma Corporation. The authors thank Drs. Brian Caffo for kindly contributing to scientific discussions and feedback related to this work. The authors appreciate Ms. Yukiko Lema for research management and manuscript organization, and thank Dr. Melissa A Landek-Salgado for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The current research was designed by AS. The analytic pipeline was designed by KY. The data were analyzed by KY, LL, ZN, AN, MS, and PDC. Data analysis and interpretation regarding clinical scales were assisted by NC and MM. Data analysis and interpretation regarding smell test were assisted by VK. Data analysis and interpretation regarding 7 T MRS data were assisted by MW and PB. Data analysis and interpretation regarding brain volume data were assisted by AF. Study participants were recruited and/or interviewed by NC, FCN, JMC, GN, TWS, AK (Kenkare), and AK (Kelly). The manuscript was drafted by KY, LL, and AS. All authors contributed to the discussion of the results and have approved the final manuscript to be published.

Corresponding author

Correspondence to Akira Sawa.

Ethics declarations

Competing interests

The authors declare no competing interests. As noted in the acknowledgement section, the original recruitment of study participants was partly funded by Mitsubishi Tanabe Pharma Corporation. However, this company is not involved in this specific study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Longo, L., Narita, Z. et al. A multimodal study of a first episode psychosis cohort: potential markers of antipsychotic treatment resistance. Mol Psychiatry 27, 1184–1191 (2022). https://doi.org/10.1038/s41380-021-01331-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01331-7

This article is cited by

Search

Quick links