Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants

Abstract

While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont—Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)—and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic relationships and morphology of the newly described Ischyrobacter clade.
Fig. 2: Ischyrobacter localization in turtle ant gut sections.
Fig. 3: Summary of Ischyrobacter davidsoniae metabolism.
Fig. 4: Nitrogen (N)-recycling by Ischyrobacter symbionts inferred from multi-omic data.
Fig. 5: Inosine production by Cephaloticoccus capnophilus in the midgut.
Fig. 6: Proposed model on purine metabolism and N-recycling in symbiont communities of turtle ant mature workers’ gut.

Similar content being viewed by others

Data availability

The Ischyrobacter davidsoniae Cv33a genome (Project ID: Gp0110144) and the Ischyrobacter sp. CSM3487_49 genome (Project ID: Gp0624441) are available from the IMG/M-ER website (https://img.jgi.doe.gov/) by searching the project IDs. The Ischyrobacter sp. bin5 draft genome from C. grandinosus is accessible on the IMG/M-ER C. grandinosus metagenome page (Project ID: Gp0125967), by selecting “Metagenome Bins” in the “Statistics” tab. The Cephaloticoccus capnophilus genome (Project ID: Gp0110136) was downloaded from the IMG/M-ER website by searching the project ID. All 16S amplicon sequencing data are from Flynn et al. [18], https://github.com/peterjflynn/cephalotes_gut_localization and Hu et al. [24], https://doi.org/10.5061/dryad.kwh70rz5d, and have been deposited in the GenBank Short Read Archive under BioProject PRJNA668764 at https://www.ncbi.nlm.nih.gov/bioproject/668764 and BioProject PRJNA767930 at https://www.ncbi.nlm.nih.gov/bioproject/767930, respectively. Supplementary data can be found in our data repository at: https://doi.org/10.6084/m9.figshare.21989537.

References

  1. Klepzig KD, Adams AS, Handelsman J, Raffa KF. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ Entomol. 2009;38:67–77.

    Article  CAS  PubMed  Google Scholar 

  2. Dale C, Moran NA. Molecular interactions between bacterial symbionts and their hosts. Cell. 2006;126:453–65.

    Article  CAS  PubMed  Google Scholar 

  3. Salem H, Kaltenpoth M. Beetle–bacterial symbioses: endless forms most functional. Annu Rev Entomol. 2022;67:201–19.

    Article  PubMed  Google Scholar 

  4. Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:375–90.

    Article  CAS  PubMed  Google Scholar 

  5. Moreau CS. Symbioses among ants and microbes. Curr Opin Insect Sci. 2020;39:1–5.

    Article  PubMed  Google Scholar 

  6. Russell JA, Sanders JG, Moreau CS. Hotspots for symbiosis: function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News. 2017;24:43–69.

    Google Scholar 

  7. Sanders JG, Lukasik P, Frederickson ME, Russell JA, Koga R, Knight R, et al. Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr Comp Biol. 2017;57:705–22.

    Article  CAS  PubMed  Google Scholar 

  8. Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007;5:48.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9:964.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bisch G, Neuvonen M-M, Pierce NE, Russell JA, Koga R, Sanders JG, et al. Genome evolution of Bartonellaceae symbionts of ants at the opposite ends of the trophic scale. Genome Biol Evol. 2018;10:1687–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jackson R, Monnin D, Patapiou PA, Golding G, Helanterä H, Oettler J, et al. Convergent evolution of a labile nutritional symbiosis in ants. ISME J. 2022;16:2114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klein A, Schrader L, Gil R, Manzano-Marín A, Flórez L, Wheeler D, et al. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J. 2016;10:376–88.

    Article  CAS  PubMed  Google Scholar 

  13. Neuvonen M-M, Tamarit D, Näslund K, Liebig J, Feldhaar H, Moran NA, et al. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Rep. 2016;6:39197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rubin BER, Kautz S, Wray BD, Moreau CS. Dietary specialization in mutualistic acacia-ants affects relative abundance but not identity of host-associated bacteria. Mol Ecol. 2019;28:900–16.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen AK, Pers D, Russell JA. Chapter Five—Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In: Oliver KM, Russell JA (eds). Advances in insect physiology, vol. 58. 1st ed. Academic Press, Cambridge, 2020. pp 161–205.

  16. Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC. Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep. 2018;8:15936.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol. 2014;23:1268–83.

    Article  PubMed  Google Scholar 

  18. Flynn PJ, D’Amelio CL, Sanders JG, Russell JA, Moreau CS. Localization of bacterial communities within gut compartments across Cephalotes turtle ants. Appl Environ Microbiol. 2021;87:e02803–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bution ML, Caetano FH. Ileum of the Cephalotes ants: a specialized structure to harbor symbionts microorganisms. Micron. 2008;39:897–909.

    Article  CAS  PubMed  Google Scholar 

  20. Bution ML, Caetano FH. The midgut of Cephalotes ants (Formicidae: Myrmicinae): ultrastructure of the epithelium and symbiotic bacteria. Micron. 2010;41:448–54.

    Article  PubMed  Google Scholar 

  21. Roche RK, Wheeler DE. Morphological specializations of the digestive tract of Zacryptocerus rohweri (Hymenoptera: Formicidae). J Morphol. 1997;234:253–62.

    Article  PubMed  Google Scholar 

  22. Cook SC, Davidson DW. Nutritional and functional biology of exudate-feeding ants. Entomol Exp Appl. 2006;118:1–10.

    Article  Google Scholar 

  23. Lanan MC, Rodrigues PADP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10:1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu Y, D’Amelio CL, Béchade B, Cabuslay CS, Łukasik P, Sanders JG, et al. Partner fidelity and environmental filtering preserve stage-specific turtle ant gut symbioses for over 40 million years. Ecol Monogr. 2023;93:e1560.

    Article  Google Scholar 

  25. Nalepa CA. Origin of mutualism between termites and flagellated gut protists: transition from horizontal to vertical transmission. Front Ecol Evol. 2020;8:14.

    Article  Google Scholar 

  26. Davidson DW, Cook SC, Snelling RR, Chua TH. Explaining the abundance of ants in lowland tropical rainforest canopies. Science. 2003;300:969–72.

    Article  CAS  PubMed  Google Scholar 

  27. Duplais C, Sarou-Kanian V, Massiot D, Hassan A, Perrone B, Estevez Y, et al. Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nat Commun. 2021;12:676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Béchade B, Hu Y, Sanders JG, Cabuslay CS, Łukasik P, Williams BR, et al. Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny. FEMS Microbiol Ecol. 2022;98:fiac068.

    Article  PubMed  Google Scholar 

  29. Nalepa CA. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol. 2015;40:323–35.

    Article  Google Scholar 

  30. Meurville MP, LeBoeuf AC. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol News. 2021;31:1–30.

    Google Scholar 

  31. Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE, Hu Y, et al. Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol. 2012;21:2282–96.

    Article  PubMed  Google Scholar 

  32. Hu Y, Lukasik P, Moreau CS, Russell JA. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol Ecol. 2014;23:1284–300.

    Article  PubMed  Google Scholar 

  33. Kautz S, Rubin BER, Russell JA, Moreau CS. Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl Environ Microbiol. 2013;79:525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meyer JM, Hoy MA. Molecular survey of endosymbionts in Florida populations of Diaphorina citri (Hemiptera: Psyllidae) and its parasitoids Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Fla Entomol. 2008;91:294–304.

    Article  Google Scholar 

  35. Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. 2018;9:556.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alonso-Pernas P, Arias-Cordero E, Novoselov A, Ebert C, Rybak J, Kaltenpoth M, et al. Bacterial community and PHB-accumulating bacteria associated with the wall and specialized niches of the hindgut of the forest cockchafer (Melolontha hippocastani). Front Microbiol. 2017;8:291.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chanson A, Moreau CS, Duplais C. Assessing biosynthetic gene cluster diversity of specialized metabolites in the conserved gut symbionts of herbivorous turtle ants. Front Microbiol. 2021;12:1640.

    Article  Google Scholar 

  38. Nelsen MP, Ree RH, Moreau CS. Ant–plant interactions evolved through increasing interdependence. Proc Natl Acad Sci USA. 2018;115:12253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Osborn AM, Moore ERB, Timmis KN. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol. 2000;2:39–50.

    Article  CAS  PubMed  Google Scholar 

  40. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proc. of the Gateway Computing Environments Workshop (GCE). New Orleans: IEEE; 2010. pp 1–8.

  42. Russell CW, Bouvaine S, Newell PD, Douglas AE. Shared metabolic pathways in a coevolved insect-bacterial symbiosis. Appl Environ Microbiol. 2013;79:6117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA. 2017;114:4775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J. 2013;7:1556–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bauer E, Kaltenpoth M, Salem H. Minimal fermentative metabolism fuels extracellular symbiont in a leaf beetle. ISME J. 2020;14:866–70.

    Article  CAS  PubMed  Google Scholar 

  46. Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol. 2018;28:1896–902.e5.

    Article  CAS  PubMed  Google Scholar 

  47. Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, et al. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA. 2009;106:19521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000;407:81–6.

    Article  CAS  PubMed  Google Scholar 

  50. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMGs/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–77.

    Article  CAS  PubMed  Google Scholar 

  51. Price SL, Blanchard BD, Powell S, Blaimer BB, Moreau CS. Phylogenomics and fossil data inform the systematics and geographic range evolution of a diverse neotropical ant lineage. Insect Syst Div. 2022;6:9.

    Google Scholar 

  52. Wheeler DE. Behavior of the ant, Procryptocerus scabriusculus (Hymenoptera: Formicidae), with comparisons to other Cephalotines. Psyche. 1984;91:171–92.

    Article  Google Scholar 

  53. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.

    Article  Google Scholar 

  54. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol. 1992;15:593–600.

    Article  Google Scholar 

  55. Wright ES, Yilmaz LS, Corcoran AM, Ökten HE, Noguera DR. Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification. Appl Environ Microbiol. 2014;80:5124–33.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer DJC, et al. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol. 2017;26:3808–25.

    Article  PubMed  Google Scholar 

  57. Straka J, Feldhaar H. Development of a chemically defined diet for ants. Insectes Soc. 2007;54:100–4.

    Article  Google Scholar 

  58. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA. 2009;106:21236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Westreich ST, Treiber ML, Mills DA, Korf I, Lemay DG. SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinform. 2018;19:175.

    Article  Google Scholar 

  61. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics. 2014;30:614–20.

    Article  CAS  PubMed  Google Scholar 

  63. Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.

    Article  CAS  PubMed  Google Scholar 

  64. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–4.

    Article  CAS  PubMed  Google Scholar 

  67. Barkdull M, Moreau CS. Worker reproduction and caste polymorphism impact genome evolution and social genes across the ants. Genome Biol Evol. 2023;15:evad095.

  68. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.

    Article  CAS  PubMed  Google Scholar 

  70. Haas B. TransDecoder. 2022. https://github.com/TransDecoder/TransDecoder.

  71. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Thompson KN, Huttenhower C, Franzosa EA. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics. 2021;37:i34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Klingenberg H, Meinicke P. How to normalize metatranscriptomic count data for differential expression analysis. PeerJ. 2017;5:e3859.

    Article  PubMed  PubMed Central  Google Scholar 

  77. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.

    Article  PubMed  Google Scholar 

  78. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14.

    Article  CAS  PubMed  Google Scholar 

  79. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:50–60.

    Article  Google Scholar 

  80. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022;31:47–53.

    Article  CAS  PubMed  Google Scholar 

  81. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020;15:799–21.

    Article  CAS  PubMed  Google Scholar 

  82. Lu W, Clasquin MF, Melamud E, Amador-Noguez D, Caudy AA, Rabinowitz JD. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal Chem. 2010;82:3212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ankrah NYD, Wilkes RA, Zhang FQ, Aristilde L, Douglas AE. The metabolome of associations between xylem-feeding insects and their bacterial symbionts. J Chem Ecol. 2020;46:735–44.

    Article  CAS  PubMed  Google Scholar 

  84. Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics. 2002;18:S105–10.

    Article  PubMed  Google Scholar 

  85. Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17:1735–61.

    Article  CAS  PubMed  Google Scholar 

  86. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

    Google Scholar 

  87. Huang Z, Wang C. A review on differential abundance analysis methods for mass spectrometry-based metabolomic data. Metabolites. 2022;12:305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  89. Lenth RV. emmeans: Estimated marginal means, aka least-squares means. 2022.

  90. Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: an alternative to least squares means. Am Stat. 1980;34:216–21.

    Google Scholar 

  91. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.

    Google Scholar 

  92. Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci USA. 1999;96:12638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B Biol Sci. 1993;253:167–71.

    Article  Google Scholar 

  94. Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS ONE. 2015;10:e0117617.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A Genus definition for bacteria and archaea based on a standard genome relatedness index. mBio. 2020;11:02475–19.

    Article  Google Scholar 

  96. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson A-S, Wernegreen JJ, et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002;296:2376–9.

    Article  CAS  PubMed  Google Scholar 

  98. Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–35.

    Article  CAS  PubMed  Google Scholar 

  99. Lin JY, Russell JA, Sanders JG, Wertz JT. Cephaloticoccus gen. nov., a new genus of ‘Verrucomicrobia’ containing two novel species isolated from Cephalotes ant guts. Int J Syst Evol Microbiol. 2016;66:3034–40.

    Article  CAS  PubMed  Google Scholar 

  100. Stoll S, Feldhaar H, Gross R. Transcriptional profiling of the endosymbiont Blochmannia floridanus during different developmental stages of its holometabolous ant host. Environ Microbiol. 2009;11:877–88.

    Article  CAS  PubMed  Google Scholar 

  101. Margesin R, Volgger G, Wagner AO, Zhang D, Poyntner C. Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil. Appl Microbiol Biotechnol. 2021;105:2967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Singh S, Kaur I, Kariyat R. The multifunctional roles of polyphenols in plant-herbivore interactions. Int J Mol Sci. 2021;22:1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dillon R, Charnley K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol. 2002;153:503–9.

    Article  CAS  PubMed  Google Scholar 

  104. Ngugi DK, Tsanuo MK, Boga HI. Benzoic acid-degrading bacteria from the intestinal tract of Macrotermes michaelseni Sjöstedt. J Basic Microbiol. 2007;47:87–92.

    Article  CAS  Google Scholar 

  105. Santos-Garcia D, Latorre A, Moya A, Gibbs G, Hartung V, Dettner K, et al. Small but powerful, the primary endosymbiont of moss bugs, Candidatus Evansia muelleri, holds a reduced genome with large biosynthetic capabilities. Genome Biol Evol. 2014;6:1875–93.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, et al. The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA. 2003;100:9388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jørgensen BB, Postgate JR, Postgate JR, Kelly DP. Ecology of the bacteria of the sulphur cycle with special reference to anoxic—oxic interface environments. Philos Trans R Soc Lond B Biol Sci. 1982;298:543–61.

    Article  PubMed  Google Scholar 

  108. Meseguer AS, Manzano-Marín A, Coeur d’Acier A, Clamens A-L, Godefroid M, Jousselin E. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Mol Ecol. 2017;26:2363–78.

    Article  CAS  PubMed  Google Scholar 

  109. Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio. 2016;7:e01326–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Salem H, Kirsch R, Pauchet Y, Berasategui A, Fukumori K, Moriyama M, et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr Biol. 2020;30:2875–86.

    Article  CAS  PubMed  Google Scholar 

  111. Li Y, Leonard SP, Powell JE, Moran NA. Species divergence in gut-restricted bacteria of social bees. Proc Natl Acad Sci USA. 2022;119:e2115013119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shoemaker V, Nagy KA. Osmoregulation in amphibians and reptiles. Annu Rev Physiol. 1977;39:449–71.

    Article  CAS  PubMed  Google Scholar 

  113. O’Donnell M. Insect excretory mechanisms. In: Simpson SJ (ed). Advances in insect physiology, vol. 35. 1st ed. Academic Press, Cambridge, 2008. pp 1–22.

  114. Cho B-K, Federowicz SA, Embree M, Park Y-S, Kim D, Palsson BØ. The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Res. 2011;39:6456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rettner RE, Saier MH Jr. The autoinducer-2 exporter superfamily. Micro Physiol. 2010;18:195–205.

    Article  CAS  Google Scholar 

  116. Powell JE, Martinson VG, Urban-Mead K, Moran NA. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol. 2014;80:7378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA. 2014;111:E2149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pande S, Kost C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 2017;25:349–61.

    Article  CAS  PubMed  Google Scholar 

  119. Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet. 2001;17:589–96.

    Article  CAS  PubMed  Google Scholar 

  120. McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morris JJ, Lenski RE, Zinser ER. The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hillesland KL, Stahl DA. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc Natl Acad Sci USA. 2010;107:2124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci USA. 2014;111:17941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.

    Article  PubMed  Google Scholar 

  125. Hussa EA, Goodrich-Blair H. It takes a village: ecological and fitness impacts of multipartite mutualism. Annu Rev Microbiol. 2013;67:161–78.

    Article  CAS  PubMed  Google Scholar 

  126. Price SL, Etienne RS, Powell S. Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation. Evolution. 2016;70:903–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Scott Powell and Jignasha Rana who collected specimens used in this study. We are grateful to Benjamin Rubin who participated in C. varians genome sequencing and assembly. Thanks also go to Rebecca Wilkes who worked on metabolomic sample preparation and Dan Freeman who helped in genomic analyses. We further thank Alicia Pastor at Michigan State University for the work on TEM images, and Aharon Oren and Bernhard Schink for their help naming Ischyrobacter davidsoniae. Finally, we thank Katrina Terry, Azad Ahmed, Rachel Ehrlich, and Steven Lang from the Drexel Genomic Core Facility who worked on the PacBio sequencing preparation and processing.

Funding

This work was supported by National Science Foundation CBET-1653092 to LA, DEB-1442156 to JTW, DEB-1900357 to CSM, DOB-1442144 to JAR, GRF-2041772 to CSC, and TUES-1245632 to GLR and JAR.

Author information

Authors and Affiliations

Authors

Contributions

BB, CSC, YH, JTW, and JAR designed research; BB, CSC, YH, CMM, BH, JYL, CD, LA, JTW, and JAR contributed to conceptualization; BB, CSC, YH, CMM, BH, JYL, YS, VJF, DA, RL, CJO, CSM, JTW, and JAR performed research; BB, CSC, JTW, and JAR analyzed data; BB and JAR wrote the manuscript; BB, YH, GLR, LA, JTW, and JAR reviewed and edited the manuscript; CSC, GLR, CSM, LA, JTW, and JAR contributed to funding; all authors approved the final version.

Corresponding author

Correspondence to Benoît Béchade.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béchade, B., Cabuslay, C.S., Hu, Y. et al. Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. ISME J 17, 1751–1764 (2023). https://doi.org/10.1038/s41396-023-01490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01490-1

Search

Quick links