Article | Published:

Microbiome functioning depends on individual and interactive effects of the environment and community structure

The ISME Journalvolume 13pages111 (2019) | Download Citation


How ecosystem functioning changes with microbial communities remains an open question in natural ecosystems. Both present-day environmental conditions and historical events, such as past differences in dispersal, can have a greater influence over ecosystem function than the diversity or abundance of both taxa and genes. Here, we estimated how individual and interactive effects of microbial community structure defined by diversity and abundance, present-day environmental conditions, and an indicator of historical legacies influenced ecosystem functioning in lake sediments. We studied sediments because they have strong gradients in all three of these ecosystem properties and deliver important functions worldwide. By characterizing bacterial community composition and functional traits at eight sites fed by discrete and contrasting catchments, we found that taxonomic diversity and the normalized abundance of oxidase-encoding genes explained as much variation in CO2 production as present-day gradients of pH and organic matter quantity and quality. Functional gene diversity was not linked to CO2 production rates. Surprisingly, the effects of taxonomic diversity and normalized oxidase abundance in the model predicting CO2 production were attributable to site-level differences in bacterial communities unrelated to the present-day environment, suggesting that colonization history rather than habitat-based filtering indirectly influenced ecosystem functioning. Our findings add to limited evidence that biodiversity and gene abundance explain patterns of microbiome functioning in nature. Yet we highlight among the first time how these relationships depend directly on present-day environmental conditions and indirectly on historical legacies, and so need to be contextualized with these other ecosystem properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Tilman D, Isbell F, Cowles JM. Biodiversity and ecosystem functioning. Annu Rev. Ecol Evol S. 2014;45:471–93.

  2. 2.

    Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104:936–46.

  3. 3.

    Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546:145–7.

  4. 4.

    Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. The contribution of species richness and composition to bacterial services. Nature. 2005;436:1157–60.

  5. 5.

    Venail PA, Vives MJ. Positive effects of bacterial diversity on ecosystem functioning driven by complementarity effects in a bioremediation context. PLoS ONE. 2013;8:e72561.

  6. 6.

    Jiang L. Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology. 2007;88:1075–85.

  7. 7.

    Becker J, Eisenhauer N, Scheu S, Jousset A. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecol Lett. 2012;15:468–74.

  8. 8.

    Nielsen UN, Ayres E, Walln DH, Bardgett RD. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci. 2011;62:105–16.

  9. 9.

    Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.

  10. 10.

    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.

  11. 11.

    Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.

  12. 12.

    Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284:2124–9.

  13. 13.

    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:214.

  14. 14.

    Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.

  15. 15.

    Vass M, Langenheder S. The legacy of the past: effects of historical processes on microbial metacommunities. Aquat Microb Ecol. 2017;79:13–19.

  16. 16.

    Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

  17. 17.

    Friedline CJ, Franklin RB, McCallister SL, Rivera MC. Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures. Biogeosciences. 2012;9:2177–93.

  18. 18.

    Fukami T, Morin PJ. Productivity–biodiversity relationships depend on the history of community assembly. Nature. 2003;424:423–6.

  19. 19.

    Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett. 2010;13:675–84.

  20. 20.

    Lear G, Bellamy J, Case BS, Lee JE, Buckley HL. Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. ISME J. 2014;8:1715–26.

  21. 21.

    Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.

  22. 22.

    Niño-García JP, Ruiz-Gonzalez C, del Giorgio PA. Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton. Ecol Lett. 2016;19:1506–15.

  23. 23.

    Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 2009;54:2298–314.

  24. 24.

    Baas-Becking LGM. Geobiologie of inleiding tot de milieukunde. The Hague, Netherlands: WP Van Stockum & Zoon; 1934.

  25. 25.

    Tanentzap AJ, Szkokan-Emilson EJ, Kielstra BW, Arts MT, Yan ND, Gunn JM. Forests fuel fish growth in freshwater deltas. Nat Commun. 2014;5:4077.

  26. 26.

    Szkokan-Emilson EJ, Wesolek BE, Gunn JM. Terrestrial organic matter as subsidies that aid in the recovery of macroinvertebrates in industrially damaged lakes. Ecol Appl. 2011;21:2082–93.

  27. 27.

    Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microb. 1999;65:4715–24.

  28. 28.

    Ball DF. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci. 1964;15:84–92.

  29. 29.

    Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology. 1989;70:97–104.

  30. 30.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75:7537–41.

  31. 31.

    Curd EE, Martiny JB, Li H, Smith TN. Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere. 2018;9:e02079.

  32. 32.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

  33. 33.

    Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.

  34. 34.

    Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14:671–83.

  35. 35.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.

  36. 36.

    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.

  37. 37.

    Mitchell A, Bucchini F, Cochrane G, Denise H, ten Hoopen P, Fraser M, et al. EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data. Nucleic Acids Res. 2016;44:595–603.

  38. 38.

    Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101.

  39. 39.

    Ruiz-González C, Niño‐García JP, del Giorgio PA. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett. 2015;18:1198–206.

  40. 40.

    Kirk TK, Farrell RL. “Enzymatic combustion”: the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–501.

  41. 41.

    Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem. 1994;26:1305–11.

  42. 42.

    Golchin A, Oades JM, Skjemstad JO, Clarke P. Soil structure and carbon cycling. Soil Res. 1994;32:1043–68.

  43. 43.

    Zhang Y, Zhang X, Liu X, Xiao Y, Qu L, Wu L, et al. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiol Lett. 2006;266:144–51.

  44. 44.

    Martiny JB, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.

  45. 45.

    Sinsabaugh RL. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem. 2010;42:391–404.

  46. 46.

    Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, et al. Guidelines for a graph‐theoretic implementation of structural equation modeling. Ecosphere. 2012;3:1–44.

  47. 47.

    Shipley B. Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference with R. Cambridge, UK: Cambridge University Press; 2016.

  48. 48.

    Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika. 2013;78:685–709.

  49. 49.

    Burnham KP, Anderson DR. Model Selection and Multimodel Inference. A Practical Information-Theoretical Approach. Heidelberg, Germany: Springer; 2002.

  50. 50.

    Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology. 2017;98:1757–63.

  51. 51.

    Schallenberg M, Kalff J. The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecology. 1993;74:919–34.

  52. 52.

    Morel FM, Hering JG. Principles and applications of aquatic chemistry. NY, USA: John Wiley & Sons; 1993.

  53. 53.

    Wang B, Lerdau M, He Y. Widespread production of nonmicrobial greenhouse gases in soils. Glob Change Biol. 2017;23:4472–82.

  54. 54.

    Grundmann GL, Debouzie D. Geostatistical analysis of the distribution of NH4 + and NO2 oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol. 2000;34:57–62.

  55. 55.

    Roger F, Bertilsson S, Langenheder S, Osman OA, Gamfeldt L. Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality. Ecology. 2016;97:2716–28.

  56. 56.

    Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson JC, Jeffries TC, et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 2016;10:2593–604.

  57. 57.

    Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships. Ecology. 2011;92:1573–81.

  58. 58.

    Emilson CE, Kreutzweiser DP, Gunn JM, Mykytczuk N. Leaf-litter microbial communities in boreal streams linked to forest and wetland sources of dissolved organic carbon. Ecosphere. 2017;8:e01678.

  59. 59.

    Judd KE, Crump BC, Kling GW. Bacterial responses in activity and community composition to photo-oxidation of dissolved organic matter from soil and surface waters. Aquat Sci. 2007;69:96–107.

  60. 60.

    Muscarella ME, Jones SE, Lennon JT. Species sorting along a subsidy gradient alters bacterial community stability. Ecology. 2016;97:2034–43.

  61. 61.

    Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, et al. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 2015;9:1693–9.

  62. 62.

    Gudasz C, Ruppenthal M, Kalbitz K, Cerli C, Fiedler S, Oelmann Y, et al. Contributions of terrestrial organic carbon to northern lake sediments. Limnol Oceanogr. 2017;2:218–27.

  63. 63.

    Heathcote AJ, Anderson NJ, Prairie YT, Engstrom DR, del Giorgio PA. Large increases in carbon burial in northern lakes during the Anthropocene. Nat Commun. 2015;6:10016.

  64. 64.

    Reed HE, Martiny JB. Microbial composition affects the functioning of estuarine sediments. ISME J. 2013;7:868–79.

Download references


We thank J. Wolstenholme for fieldwork, D. Baulcombe and I. Henderson for offering lab space, G. Jones and M. Meyer for assisting with sample processing, S. Dickens and P. Marriot for help with sequencing, and three anonymous reviewers for comments that improved an earlier draft. Support for this work came from NERC Standard Grant NE/L006561/1 and Gatsby Fellowship GAT2962 to A.J.T.

Author information


  1. Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK

    • Chloé Orland
    • , Erik J. S. Emilson
    •  & Andrew J. Tanentzap
  2. Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen St. E., Sault. Ste. Marie, ON, P6A 2E5, Canada

    • Erik J. S. Emilson
  3. Vale Living with Lakes Centre, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada, P3E 2C6

    • Nathan Basiliko
    • , Nadia C. S. Mykytczuk
    •  & John M. Gunn


  1. Search for Chloé Orland in:

  2. Search for Erik J. S. Emilson in:

  3. Search for Nathan Basiliko in:

  4. Search for Nadia C. S. Mykytczuk in:

  5. Search for John M. Gunn in:

  6. Search for Andrew J. Tanentzap in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Chloé Orland.

Electronic supplementary material

About this article

Publication history