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Abstract
How ecosystem functioning changes with microbial communities remains an open question in natural ecosystems. Both
present-day environmental conditions and historical events, such as past differences in dispersal, can have a greater influence
over ecosystem function than the diversity or abundance of both taxa and genes. Here, we estimated how individual and
interactive effects of microbial community structure defined by diversity and abundance, present-day environmental
conditions, and an indicator of historical legacies influenced ecosystem functioning in lake sediments. We studied sediments
because they have strong gradients in all three of these ecosystem properties and deliver important functions worldwide. By
characterizing bacterial community composition and functional traits at eight sites fed by discrete and contrasting
catchments, we found that taxonomic diversity and the normalized abundance of oxidase-encoding genes explained as much
variation in CO2 production as present-day gradients of pH and organic matter quantity and quality. Functional gene
diversity was not linked to CO2 production rates. Surprisingly, the effects of taxonomic diversity and normalized oxidase
abundance in the model predicting CO2 production were attributable to site-level differences in bacterial communities
unrelated to the present-day environment, suggesting that colonization history rather than habitat-based filtering indirectly
influenced ecosystem functioning. Our findings add to limited evidence that biodiversity and gene abundance explain
patterns of microbiome functioning in nature. Yet we highlight among the first time how these relationships depend directly
on present-day environmental conditions and indirectly on historical legacies, and so need to be contextualized with these
other ecosystem properties.

Introduction

Biodiversity-ecosystem functioning (B-EF) relationships
are generally expected to be positive because more unique

functions are captured as species numbers increase. While
this prediction often holds true for macroorganisms [1], it is
still contested for microorganisms. Some have found sup-
port for positive B-EF relationships in microbial commu-
nities [2–5], as expected if microbes perform a diversity of
functions (e.g. litter decomposition, temperature regulation,
and nutrient cycling), which increase with numbers of taxa.
However, others have found negative and no B-EF rela-
tionships [6, 7]. One explanation for this conflicting evi-
dence is that taxonomic diversity may have relatively little
influence on functioning in microbial ecosystems that are
saturated by thousands of species that overlap in their traits
[8]. Empirical evidence to support B-EF theory in microbes
has also come from communities where species richness
rarely exceeds 100 taxa [9], which is much less than the
thousands of taxa found in natural communities, e.g. up to
9,000 prokaryotic taxa in 1 cm3 of soil [10], but
see Delgado-Baquerizo et al. [2] and Laforest-Lapointe
et al. [3].
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Functional information may help resolve the lack of
widespread evidence for a positive B-EF relationship in
microbial communities by overcoming the limitations of
using solely taxonomic information. In particular, taxo-
nomic information may have little value where it does not
map onto function, and this may be relatively common in
microorganisms because taxa are delineated from classify-
ing closely-related genetic sequences rather than morpho-
logical or physiological traits [11]. Horizontal gene transfer
can also complicate the use of taxonomic information in
microbes because traits might not be vertically transmitted
as expected based on phylogeny [12]. Given these concerns,
Graham et al. [13] recently found that combining both
taxonomic and functional measures of diversity strength-
ened predictions of ecosystem functioning across 82
microbial systems compared to models including only
microbial biomass. While 56% of the variation in func-
tioning was explained by environmental variables, such as
pH and temperature, incorporating information about
microbial taxonomic diversity explained, on average, 8% of
additional variance [13]. Total functional gene abundance
equally improved predictions of microbial respiration [13].
These findings underscore the importance of considering
abundance and diversity metrics of both function and tax-
onomy when predicting B-EF relationships.

Past events can also leave a legacy on present-day
microbial communities and influence species composition
and subsequent ecosystem function as much as the con-
temporary environment [14, 15]. These events can include
past differences in dispersal and environmental conditions
that have differentially sorted species composition. Thus,
microbial communities can have less gene flow and greater
genetic divergence as they become increasingly distant in
space irrespective of environmental similarity [16]. For
example, recent evidence has shown that historical legacies
can result in different microbial communities in similar
environmental conditions, partly because microbes are not
ubiquitously distributed [17]. Consequently, B-EF rela-
tionships have been found to depend on the temporal order
of community assembly [18, 19] and to vary over small
spatial distances (i.e. 20 m [20]). Despite their potential
importance for ecosystem functioning, the effect of histor-
ical legacies relative to other ecosystem properties remains
unclear.

Here we estimated how three ecosystem properties—
microbial diversity and abundance (hereafter “community
structure” as defined by Bier et al. [21]), present-day
environmental conditions, and historical legacies—influ-
enced ecosystem functioning in lake sediments. Our
approach advanced the search for bivariate B-EF relation-
ships by assessing the importance of diversity in the context
of other ecosystem properties. Lake sediments are well
suited to test the importance of different ecosystem

properties because they: (i) share a common microbial
species pool from which communities can be differentially
assembled according to past events [22], (ii) span large
environmental gradients across relatively small distances
(i.e. meters), and (iii) carry out functions with widespread
importance, such as for carbon (C) cycling [23]. Using next-
generation sequencing, we first tested for evidence that
historical legacies and environmental conditions influenced
microbial community composition in lake sediments. We
then tested how much in-situ organic matter mineralization
rates—measured as CO2 production under ideal conditions
—varied with two diversity and two abundance metrics
relative to the influence of historical legacies and the
present-day environment. CO2 production is a direct mea-
sure of ecosystem function because it is indicative of both
food web production and whole-lake C cycling [23]. We
predicted that higher levels of diversity, particularly a
greater diversity of functional genes, as well as a greater
abundance of genes involved in organic matter (OM)
decomposition, would increase ecosystem functioning. We
also predicted that microbial community structure would be
primarily influenced by variation in environmental condi-
tions rather than colonization history, as expected if dis-
persal was unlimited (‘everything is everywhere, but the
environment selects’ hypothesis [24]). Overall, our results
add to limited evidence that the diversity and abundance of
both taxa and functional genes explain microbiome func-
tioning in nature, and highlight for among the first time how
these effects directly depend on local environmental con-
ditions and indirectly on historical legacies.

Methods

Study site

We sampled eight littoral sites each located immediately
beneath a discrete catchment drained by a single stream in
Daisy Lake, Ontario, Canada (46°270 N, 80°520W; lake
area: 36 ha; maximum depth: 14 m, Fig. S1). The sites
spanned large gradients in the quantity and quality of ter-
restrial OM inputs from the surrounding vegetation [25].
These gradients arose from variation in recovery from his-
torical acid and metal contamination, which increased with
proximity to a nickel smelter that was closed in 1972 and
located 3.5 km northeast of the lake. Following closure of
the smelter, lake water chemistry returned to levels char-
acteristic of the broader region: mean ± standard error pH
across sites of 6.86 ± 0.02 [26]. However, the surrounding
vegetation, primarily comprised of paper birch (Betula
papyrifera) and trembling aspen (Populus tremuloides), has
been much slower to recover, resulting in a large gradient
across sites in terrestrial OM inputs.
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Past environmental histories in each site can also result in
unique species composition [16]. Thus, we considered that
the identity of each site would reflect the legacy of historical
events with its own unique soils, geomorphology, and dis-
persal events and these effects would differ from those of
the present-day environment that we could characterize in
each site from directly measurable biotic and abiotic vari-
ables (described below).

Ecosystem functioning and environmental
characterization

We measured ecosystem functioning in 10–15 sediment
samples that were collected from each site in waters that
ranged from 0.5–1.0 m deep (total n= 97). For each sam-
ple, we extruded approximately 35 mL of sediment to a
depth of 7.5 cm into 50 mL poly-propylene centrifuge tubes
(2.6 cm diameter) using a modified piston corer. Samples
were covered with approximately 10 mL lake water from
the associated site and transported to the lab on ice.

Ecosystem functioning was measured as total CO2 pro-
duction per m2 after 20 h. We incubated sediment samples
in the dark at 20.5 °C and collected headspace gas at the
start and end of the incubation by extracting a 2 mL gas
sample with an airtight syringe. Gas samples were analyzed
on an infrared CO2 analyzer (Q-S151, Qubit Systems,
Kingston, ON, Canada) with a N2 carrier and converted to
mass produced per m2 using the ideal gas law and a tube
surface area of 5.31 cm2. During sediment sampling,
ambient air samples were collected in airtight syringes from
each site for subtraction of pre-incubation CO2 from head-
space mass. Sediments were then freeze-dried and stored at
−20 °C to stabilize the microbial communities and ensure
they were representative of CO2 measurements [27].

We initially characterized sediments with 20 environ-
mental variables. To minimize collinearity, we reduced
these to four statistically independent predictors that best
characterized environmental differences: pH, OM quantity,
%terrestrial C, and C:N ratio (see Text S1 and Table S3 for
details). Although this reduction in variables somewhat
biased our representation of the local environment, we were
primarily interested in estimating the importance of the
strongest environmental gradients relative to other ecosys-
tem properties. First, we measured pH in porewater of each
sediment sample at the time of collection with a handheld
pH meter (HI9126/HI1230, Hanna Instruments, Woon-
socket, RI, USA). Second, 0.5 g of each sediment core was
analyzed after incubation for percent OM content as weight
loss on ignition (LOI) for 12 h in a 400 °C muffle furnace,
confirming the absence of any visible char [28]. We then
used two complementary measurements of OM quality that
were averaged at the site-level from a different, unpublished
study (Text S1). The first was the percent of terrestrial C in

sediment, which characterized the origin of OM. Percent
terrestrial C was estimated with a three isotope (δ13C, δ15N,
δ34S) mixing model (full details in Text S1). The second
measurement was the C:N ratio of sediment, which char-
acterized OM composition. Lower C:N ratios were con-
sidered a higher quality to microbial decomposers because
they provide more N per mass of sample and are typically
associated with more labile materials [29].

Microbial communities

We constructed amplicon sequencing libraries for each
sediment sample to characterize microbial community
composition. Following careful homogenization, DNA was
extracted from 0.25 g of each of the samples that had CO2

measurements using a PowerSoil PowerLyser DNA Isola-
tion Kit (MoBio Laboratories Inc., Carlsbad, CA, USA)
according to the manufacturer’s instructions. Insufficient
fungal sequences were recovered, so we focused on bacteria
as representatives of the microbial community. We targeted
the V3–V4 region of the 16S rRNA gene using the bacteria-
specific 341F-805R primer pair with a two-stage PCR
designed for paired-end sequencing. Amplicons were
sequenced on an Illumina MiSeq platform (Illumina, San
Diego, CA, USA), quality-filtered to remove low-quality
bases and putative chimeras, and clustered into operational
taxonomic units (OTUs) at 97% sequence similarity using
mothur version 1.39.5 [30]. Any read sequenced fewer than
six times was removed from subsequent analyses to mini-
mize the influence of spurious reads [31]. Counts of indi-
vidual OTUs were then scaled by the total number of reads
in each sample to account for sequencing biases using the R
package DESeq2 [32]. This measure of “normalized abun-
dance” allows samples with varying read counts to be
compared [33]. Such normalization is widely applied for
high-throughput count data [34, 35], and all downstream
analyses were performed on the DESeq-transformed data to
control for these differences in read numbers [33, 36].

We also constructed shotgun sequencing libraries for 22
of the 97 samples in order to characterize functional genes
present in each site (n= 2−3 samples per site). Sequencing
libraries were prepared with 1 ng of genomic DNA per
sample using the Nextera XT DNA Sample Preparation Kit
(Illumina) following the manufacturer’s instructions and
sequenced on an Illumina NextSeq platform. Raw sequen-
ces were processed following the EMBL-EBI pipeline
version 3.0 [37] and summarized using Gene Ontology
(GO) terms. Sequences were deposited in EBI under project
number ERP01606 (full details in Text S1).

Using the microbial sequencing data, we calculated two
diversity and two abundance metrics. First, we calculated
normalized bacterial abundance by summing the total
number of OTUs per sample. The number of OTUs were

Microbiome functioning depends on individual and interactive effects of the environment and community. . . 3



DESeq-transformed counts rather than relative abundances,
so their sum was not equal to 1 and represented differences
in normalized abundances between samples [33, 36]. Sec-
ond, we calculated taxonomic diversity as Shannon’s H’ for
each sample at both the OTU- and the family-level. As both
measures were strongly correlated (ρ= 0.92, p < 0.0001),
we used the family-level Shannon’s H’ in our analyses to
limit the number of unclassified taxa whilst retaining as
much information as possible about taxonomic diversity
(42% of reads were classified to this rank). Shannon’s H’ is
considered a robust estimator of diversity for microbial
communities as it accounts for both abundance and even-
ness [38], and has been widely used, thereby allowing for
comparison with other studies [2, 39]. Similarly, we cal-
culated functional diversity on the data obtained from
shotgun sequencing using Shannon’s H’. Finally, we
defined four subsets of functional genes that were involved
in different aspects of terrestrial OM decomposition and
consequently CO2 production (after Refs [40–43]). We
summed the DESeq-transformed abundance of these genes,
which were broadly associated with: (1) hydrolase enzymes
that break down cellulose, hemicellulose and xylan, (2)
oxidases that break down a range of compounds and/or are
involved in assimilatory and dissimilatory P and N trans-
formations, (3) intracellular-level carbohydrate metabolism,
and (4) aromatic compound catabolism (see Table S4 for
full list of GO categories).

Is there evidence of legacy and environmental
effects on community composition?

We assessed similarity between microbial communities as
geographic and environmental distances increased to test if

they were associated with historical legacies and present-
day conditions. We calculated the Morisita–Horn similarity
index for all pair-wise combinations of normalized micro-
bial abundance, Euclidean distances for geographic dis-
tance, and Mahalanobis distances for environmental
similarity (i.e. standardized Euclidean distances accom-
modating for different measurement units and covariance
structure among pH, OM quantity, %terrestrial C, C:N
ratio). These indexes were calculated using the 97 samples
rather than the 22 sample functional gene subset, and sig-
nificance of the associations between distance matrices was
assessed using partial Mantel tests with Pearson’s correla-
tion coefficient and 999 permutations constrained within
sites. Partial Mantel tests are commonly used to disentangle
the effects of present-day environmental conditions on
community composition from those of historical legacies,
especially when continuous habitat variables and geo-
graphic distances are available [16]. Here they allowed us to
assess the relationship between microbial community and
geographic distance while controlling for environmental
similarity and vice versa.

We performed a canonical correspondence analysis
(CCA) to explore further how bacterial community com-
position varied in relation to historical legacies and present-
day environmental conditions, and in particular, to identify
the environmental variables that most explained differences
among sites. The CCA was constrained by site, pH, OM
quantity, %terrestrial C, and C:N ratio. To test whether
community composition varied more with present-day
environmental conditions or historical legacies, which we
interpreted as being associated with the variation among
sites that was unexplained by pH, OM quantity, %terrestrial
C, and C:N ratio, we ran a permutational multivariate
analysis of variance (PERMANOVA) using the ‘adonis2’
function in the ‘vegan’ R package. Significance of marginal
effects was assessed with 999 permutations of the com-
munity data constrained within sites, with the environ-
mental variables and site identity as predictors. To achieve
normality, C:N ratio was log-transformed while OM quan-
tity (%LOI) and %terrestrial C were logit-transformed.

What is the relative importance of different
properties for ecosystem functioning?

We developed a conceptual model to test our hypotheses
about the relative importance of community structure,
present-day environmental conditions, and historical lega-
cies for ecosystem functioning. This model considered four
different pathways by which the different properties could
influence ecosystem functioning. Firstly, the model let
ecosystem functioning vary with the direct effects of the
four environment variables and four measures of commu-
nity structure (Fig. 1). By considering genomic data that

Environment

Historical 
legacies

C:N ratio 

pH 

% terrestrial C 

OM quantity 

Site 

Ecosystem functioning 
!CO2 production 

Community structure 

Functional gene abundance 

Normalized  
Bacterial Abundance 

Functional 
Diversity 

Taxonomic 
Diversity 

Oxidases 
Aromatic 

catabolism 
Carbohydrate 

catabolism Hydrolases 

Normalized Functional Gene Abundance (4 subsets) 

Fig. 1 Trait-based conceptual model of pathways by which different
ecosystem properties (community structure, present-day environment,
and historical legacies) affect ecosystem functioning. Measured vari-
ables associated with different ecosystem properties are in solid white
boxes, with the normalized functional gene abundance subsets in
dashed white boxes. Solid arrows represent potential pathways
between ecosystem properties and dashed arrows represent potential
interactions between ecosystem properties
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could be linked to specific functions, the model also
incorporated a trait-based approach that offered more
insight into ecosystem functioning than solely based on
community-level diversity measures [9, 44]. With the trait-
based approach in mind, the normalized abundances of the
functional gene sets and measures of OM quality could also
interact (dashed arrows in Fig. 1), as expected because the
efficacy of traits involved in decomposition generally
depend on OM quality rather than quantity [39, 45].
Thirdly, the model also accounted for the indirect effects
that historical legacies, associated with each of the eight
sites, and present-day environmental conditions could have
an ecosystem functioning by influencing the four measures
of community structure. Finally, we estimated the effects of
these four measures on one another to test how the rela-
tionship between taxonomy and function indirectly affected
ecosystem functioning (small arrows in Fig. 1).

We used path analysis to estimate the strength and direction
of presumed direct and indirect causal linkages that described
our conceptual model (Fig. 1). In this analysis, we only used
the 22 samples for which we had both taxonomic and func-
tional information. The model formula for log-transformed
CO2 production as a response in R pseudo-code was:

Ecosystem functioning � environmentþ community

structureþ functional gene abundance : OM quality

þ ð1jHistorical legaciesÞ;

where environment included pH, OM quantity, %terrestrial
C, and C:N ratio; community structure was each of normal-
ized bacterial abundance, taxonomic diversity, functional
diversity, and normalized functional gene abundance; the
interaction was between normalized functional gene abun-
dance and each measure of OM quality (%terrestrial C and C:
N ratio); and historical legacies were represented by a site-
level random effect. We acknowledge that this random effect
can also incorporate other present-day environmental vari-
ables that systematically varied across sites, but these are
unlikely to be more important or uncorrelated with the 20
variables that we actually measured (Table S1). In total, we
fitted the model separately with each of the four normalized
functional gene abundance subsets. As gene counts were
DESeq-transformed, there was no dependency of one gene on
another across samples, and genes could therefore be summed
into independent subsets. All of the models also estimated
residual (i.e. random) error for each of the focal responses.

We also fitted four separate models to estimate each
measure of community structure as a response of the
environment, historical legacies, and the other measures of
community structure (small arrows in Fig. 1). For functional
gene abundance, we only modeled the subset(s) of genes
identified as significant in the model with CO2 production

as a response. Allowing the measures of community
structure to be both dependent variables and independent
predictors of ecosystem functioning is consistent with
treating them as endogenous variables in a path analysis that
teases apart direct and indirect correlations [46, 47].

Each model described above was fitted with linear mixed
models using Bayesian inference by calling the ‘blme’
function in the R package ‘blmer’ [48]. All measured
variables were standardized to a common scale with a mean
of 0 and an SD of 1, so that we could compare the relative
importance of different linkages. To infer effects, we cal-
culated posterior means and 95% confidence intervals (CI)
for each parameter by bootstrapping model parameter esti-
mates 800 times with the ‘boot’ package in R. Effects were
considered significant when 95% CI around estimated effect
sizes excluded zero. To assess the overall goodness-of-fit of
models, marginal R2 values were calculated.

As all our four models with different functional gene
subsets were within 2 small sample Akaike information
criterion (AICc) units of each other ([49], Table S5), we
averaged parameter estimates across the model set. The
posterior means of each model were multiplied by their
respective AICc weight and summed to determine the
average parameter estimates and 95% CI. For functional
gene abundance and its interaction with OM quality, no
averaging was performed across the model set. We instead
reported the effects associated with each of the four unique
subsets of functional genes.

Results

Bacterial community composition

Overall, we found considerable bacterial biodiversity. We
obtained about 25,000 OTUs that corresponded with about
540 families in each of the 97 and 22 sample datasets
(Table S6). The most common OTUs were in the Kor-
ibacteraceae, Hyphomicrobiaceae and Solibacteraceae, each
accounting for 0.5% of all normalized abundances per
sample. The 22 samples with functional data that we con-
sidered in our path analyses subsequently also showed
relatively high taxonomic and functional diversity, with H’
values exceeding 5 (Table S7). The highest number of
genes involved in CO2 production (i.e. normalized func-
tional gene abundance) came from oxidase genes, followed
by hydrolases, carbohydrate catabolism, and aromatic
compound catabolism (Table S7).

Biogeographical patterning of the study sites

The eight sites each showed evidence of having unique
bacterial communities that reflected both past events and
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present-day environmental conditions. We specifically
found that communities became less similar as they were
increasingly distant in space when controlling for the effects
of the environment (partial Mantel test: r=−0.15, p=
0.003, Fig. 2a), suggesting that isolation by distance may
maintain differences in biotic assemblages that arose from
past events such as differential establishment and persis-
tence of species through time. These differences could not
be attributed to dispersal-limitation as most taxa were
‘everywhere’. 369 of the 551 bacterial families occurred at
all eight sites, with another 66 present at seven sites
(Fig. S2), evidence that abundances rather than presence
varied across space. We also found that community simi-
larity increased with environmental similarity when con-
trolling for geographical distances (partial Mantel tests:
r= 0.43, p= 0.005, Fig. 2b), suggesting that different
present-day environments also influenced microbial com-
munities within our study.

We found further evidence of past and present-day
influences over bacterial communities when clustering
compositional differences among sites (Table S8a). Distinct
communities were observed across sites (F= 3.92,
p= 0.01), even after constraining composition by present-
day environmental variables (Fig. 3). Both measures of OM
quality significantly differentiated communities (F= 5.64,
p= 0.001 for %terrestrial C and F= 4.61, p= 0.001 for C:
N ratio), with no effect of either pH or OM quantity
(Table S8b). We reached a similar conclusion when using a
partial redundancy analysis to compare the effects of site
identity and environmental variables on community com-
position (Table S8c).

Linking biogeography and community composition
to ecosystem functioning

We found that community structure explained as much
variation in ecosystem functioning [median (95% CI): 26%

(16–33%)] as the present-day environment [20%
(13–29%)], revealing that other properties in addition to
those of microbial communities make relatively large con-
tributions to ecosystem functioning (Fig. 4). Half of the
variation in community structure was attributable to taxo-
nomic diversity (Fig. 4). Subsequently, a 1 standard
deviation (SD) increase in taxonomic diversity above its
mean H’ of 4.4 was sufficient to increase CO2 production by
77 (95% CI: 36–127) mg m−2 from an average of 118
(102–135) to 195 (134–285) mg m−2 (Fig. 5a). The other
half of the variation in ecosystem functioning explained by
community structure came from functional genes encoding
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Fig. 2 Bacterial communities
differ across geographic and
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97 sediment samples (a)
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Fig. 3 Bacterial communities differed across sites and environments.
The CCA plot shows associations between bacterial community
composition at the family level when constrained by site and envir-
onmental variables (n= 97). Each color is a distinct site with ellipses
representing the standard error around the centroid. Arrows show
vector fitting of the constrained environmental variables. *** associated
with a variable at p < 0.001 in the PERMANOVA
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for oxidases, which were the only gene subset with a sta-
tistically significant effect (Tables S5 and S9). For example,
a 1 SD increase in normalized oxidase abundance above its
DESeq-normalized mean of 56.1 increased CO2 production
by 93 (2–317) mg m−2 from an average of 139 (99–190) to
232 (101–507) mg m−2 (Fig. 5b).

An additional 12% (median, 95% CI: 2–18%) of varia-
tion in ecosystem functioning was explained by the inter-
action between community structure and the environment
(Fig. 4). We specifically found that oxidases further
increased CO2 production when terrestrial C was relatively
abundant in sediment, highlighting the dependency of some
functional genes on specific environmental conditions for
influencing ecosystem functioning. For example, a 1 SD
increase in terrestrial C at the mean oxidase abundance
increased CO2 production from the average of 139 mg m−2

by 88 (95% CI: 46–154) mg m−2 (Fig. 5b).
Finally, the averaged model predicting CO2 production

showed that both OM quantity and pH were the strongest
environmental correlates of ecosystem functioning in our
lake sediments (Fig. 4, Table S9). For example, if OM
quantity doubled above its mean value of 13% across our
sediment cores, CO2 production increased on average
(95% CI) by 83 (35–167) mg m−2 from its mean of 118
(Fig. 5c). By contrast, a 1 SD increase in pH above its
mean of 5.9 decreased CO2 production by 23 (9–31) mg
m−2 (Fig. 5d).

Indirect effects of historical legacies and present-
day environment on ecosystem functioning

The path analysis suggested that the effect of taxonomic
diversity in predicting CO2 production was associated with

differences in bacterial communities among sites, indicative
of historical legacies, rather than filtering by the measured
environmental variables. A median of 12% (95% CI:
6–28%) of the variation in taxonomic diversity was directly
explained by site, with an additional 34% (95% CI:
15–48%), on average, explained by normalized bacterial
abundance, which itself was 20% (95% CI: 7–42%)
dependent on site (Fig. 4). Taxonomic diversity also had an
indirect effect on CO2 production by explaining a median of
24% of the variation in the normalized abundance of oxi-
dase genes (95% CI: 11–32%). This relationship was
negative, suggesting that less taxonomically diverse com-
munities were more likely to be dominated by taxa that
relied on oxidizing OM as opposed to higher diversity
communities where more functions were present
(Table S10). Overall, however, the indirect effects of his-
torical legacies on ecosystem functioning mediated by
community structure were relatively small. Historical lega-
cies explained <20% of the variation in each of the mea-
sures of community structure, none of which individually or
interactively explained more than 13% of variation in CO2

production (Fig. 4). Thus, even if our site-level random
effect included unmeasured present-day environmental
variables, these effects were minimal. By contrast, no
environmental variables influenced community structure,
consequently having no indirect effect on ecosystem func-
tioning (Table S10). While functional diversity depended on
taxonomic diversity, it did not directly influence CO2 pro-
duction (Table S10). We also verified that there were no
missing linkages in our model, namely from CO2 produc-
tion to community structure, which could feedback onto the
latter (Table S11).

Discussion

Our study is the first, to our knowledge, that estimates the
relative importance of individual and interactive effects of
three fundamental properties – community structure,
present-day environmental conditions, and historical lega-
cies – on ecosystem functioning. We found that the present-
day environment and community structure explained
roughly the same amount of variation in ecosystem func-
tion, adding to limited evidence of a positive B-EF rela-
tionship in natural microbial communities [2, 3].
Importantly, we found that ecosystem processes were pre-
dicted better by also considering other characteristics of
community structure, like functional gene abundances, and
particularly their interactive effects with the environment.
These findings, along with the evidence that microbial
diversity and abundance varied more with site identity than
with the four present-day environmental variables that most
differed among sites, highlight the large influence that
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Fig. 4 Individual and interactive effects of the environment and
microbial communities largely explain ecosystem functioning. Pre-
dictors were averaged across the model set except for normalized
functional gene abundance, where oxidases were the best supported
subset (Table S5). Boxes are shown only for variables with a direct or
indirect effect on ecosystem function with 95% CI that exclude zero.
Numbers accompanying each arrow are median (95% CI) percentage
of variance in the associated response explained by a focal effect, with
arrow width proportional to these values. Dashed lines represent
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ecosystem properties other than biodiversity have upon
ecosystem functioning.

Our results suggested that, despite their relatively small
effects, historical legacies were more important than
present-day environmental filtering in explaining the
diversity and abundance of microbial communities and thus
indirectly influencing ecosystem function. This finding is
consistent with others that have shown historical legacies to
be important for microbial-mediated ecosystem functions
[14, 50]. In our study, legacies were likely the result of
random differences in colonization history, such as arrival
order and timing [18, 19], rather than past geographic
events or dispersal limitation, as sites were all located
within the same lake and most OTUs occurred at all sites.
While measures of OM quality influenced microbial com-
munity composition, consistent with others [39, 51], there
was no direct effect of these present-day environmental

conditions on diversity and abundance, and subsequently
ecosystem function. Thus, the biogeographical patterning
across sites that we interpreted as being associated with past
events adds to growing evidence that, while ‘everything’
may be ‘everywhere’ [24], not everything flourishes
everywhere. One caveat is that there were still many OTUs
unidentifiable at the family level.

Contrary to our prediction, we found that environmental
conditions directly explained variation in CO2 production
rather than doing so indirectly by changing microbial com-
munities. For example, more acidic samples released more
CO2 due to less inorganic carbon speciation [52]. We also
found that higher OM quantities increased CO2 production,
potentially because of non-microbial processes, such as
extracellular oxidative metabolism and inorganic chemical
reactions [53]. Photo-oxidation or thermal degradation of our
samples was unlikely as they were incubated in the dark at
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Fig. 5 Environment and community structure influence ecosystem
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controlled temperatures. Alternatively, the increase in CO2

production could be due to an increase in microbial biomass
or in total abundance, but we only estimated normalized
microbial abundance in our study. These findings are also
consistent with a recent meta-analysis of 58 studies that found
microbial biodiversity was not consistently associated with
soil environmental variables, but rather more influenced by
climate, ecological legacies and evolutionary history [50].
Microbial communities may in part be controlled by pro-
cesses occurring at finer spatiotemporal scales than routinely
measured, e.g. millimeters and minutes [54].

We found that increasing taxonomic diversity promoted
ecosystem functioning more than functional gene diversity,
which had no effect on CO2 production. These results
suggest that multiple taxa may perform the same tasks
associated with as broad a function as C utilization [2].
Given this convergence of function, increasing numbers of
taxa may be sufficient to increase ecosystem functioning
irrespective of their specific traits, resulting in high levels of
complementarity [3, 5]. Our results therefore support the
need to focus on the identity of traits associated with a
response of interest rather than solely on functional diver-
sity [9, 55, 56]. Other metrics, such as phylogenetic diver-
sity, may also enhance predictions of ecosystem functioning
by capturing additional axes of trait variation to those
directly measured by functional data [57]. However, phy-
logenetic diversity may only be a useful proxy where the
associated functions are evolutionarily conserved and not
widely dispersed across lineages, as may be the case for a
universal function like C utilization.

Oxidase-encoding genes were the only functional gene
subset that we found to be associated with ecosystem
functioning. Oxidases break down complex and recalcitrant
organic polymers that come from terrestrial OM, such as
lignin and humic acids [45], and which would have varied
considerably across sites given the surrounding forest gra-
dient [25]. The increasing association between oxidases and
CO2 production as terrestrial C inputs to sediments increased
was also unsurprising as aquatic microbial communities are
adapted to utilize complex organic polymers derived from
litterfall [58, 59]. We also found more oxidase genes in less
taxonomically diverse assemblages, which may have arisen
if a few taxa containing a higher proportion of oxidase genes
became disproportionally active with increasing inputs of
terrestrial C [60]. The other subsets of genes may have not
explained much variation in CO2 production because they
affected simpler molecules that were less associated with our
specific terrestrial C gradient [61]. Additionally, shotgun
metagenomics can only ascertain the presence of genes, not
their expression, so some gene sets may have had non-
significant effects because they were inactive.

Our results also suggest that future increases of OM
inputs may promote benthic respiration and reduce the large

C sink capacity of many northern lakes [62]. Northern lakes
are burying increasingly more terrestrial OM into their
sediments, primarily due to human activities [63]. Across
our sites, a difference in sediment OM of 2 vs 55%, asso-
ciated with a doubling of surrounding forest cover from 36
to 64% [26], was sufficient to increase CO2 production by
an average (95% CI) of 5-times (3–7 times). Thus, our
results also show how models that integrate biodiversity and
trait-based approaches can better predict the outcomes of
future changes to lake C cycles. More broadly, predictions
of how ecosystem functioning varies with biodiversity will
be improved if placed in the context of other ecosystem
properties, such as past and present-day environments.
Future studies should consider generalizing the importance
of these other properties relative to the taxonomic and
functional aspects of biodiversity in different spatial and
temporal contexts. Another next step from our study would
be to disentangle past and present-day influences more
directly, such as by manipulating colonization dynamics in
different environmental contexts and measuring how eco-
system function responds (e.g. [64]).
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