Article | Published:

The anchoring effect—long-term dormancy and genetic population structure

The ISME Journal (2018) | Download Citation

Abstract

Understanding the genetic structure of populations is key to revealing past and present demographic and evolutionary processes in a species. In the past decade high genetic differentiation has been observed in many microbial species challenging the previous view of cosmopolitan distribution. Populations have displayed high genetic differentiation, even at small spatial scales, despite apparent high dispersal. Numerous species of microalgae have a life-history strategy that includes a long-term resting stage, which can accumulate in sediments and serve as refuge during adverse conditions. It is presently unclear how these seed banks affect the genetic structure of populations in aquatic environments. Here we provide a conceptual framework, using a simple model, to show that long-term resting stages have an anchoring effect on populations leading to increased genetic diversity and population differentiation in the presence of gene flow. The outcome that species with resting stages have a higher degree of genetic differentiation compared to species without, is supported by empirical data obtained from a systematic literature review. With this work we propose that seed banks in aquatic microalgae play an important role in the contradicting patterns of gene flow, and ultimately the adaptive potential and population dynamics in species with long-term resting stages.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Orsini L, Vanoverbeke J, Swillen I, Mergeay J, Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22:5983–99.

  2. 2.

    Hartl DL, Clark AG. Principles of Population Genetics 4th edn., (2007) Sinauer Associates, Sunderland, MA, xiii-652.

  3. 3.

    Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends in ecology & evolution. 2003;18:189–97.

  4. 4.

    Waples RS, Gaggiotti O. INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol. 2006;15:1419–39.

  5. 5.

    Wright S. Isolation by distance. Genetics. 1943;28:114–38.

  6. 6.

    Fenchel T, Finlay BJ. The ubiquity of small species: patterns of local and global diversity. AIBS Bulletin. 2004;54:777–84.

  7. 7.

    Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science. 2002;296:1061–3.

  8. 8.

    Foissner W, Chao A, Katz LA. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity and Conservation. 2008;17:345–63.

  9. 9.

    Medlin LK. If everything is everywhere, do they share a common gene pool? Gene. 2007;406:180–3.

  10. 10.

    Whitfield J. Biogeography: is everything everywhere? Science. 2005;310:960.

  11. 11.

    Godhe A, Egardt J, Kleinhans D, Sundqvist L, Hordoir R, Jonsson PR. Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proc R Soc Lond B: Biol Sci. 2013;280:20131599.

  12. 12.

    Lebret K, Kritzberg ES, Figueroa R, Rengefors K. Genetic diversity within and genetic differentiation between blooms of a microalgal species. Environ Microbiol. 2012;14:2395–404.

  13. 13.

    Rynearson T, Newton J, Armbrust E. Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii. Limnol Oceanogr. 2006;51:1249–61.

  14. 14.

    Vanormelingen P, Evans KM, Mann DG, Lance S, Debeer AE, D’hondt S, et al. Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites. Mol Ecol. 2015;24:4433–48.

  15. 15.

    Evans KM, Kühn SF, Hayes PK. High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo‐nitzschia pungens (Bacillariophyceae) populations. J Phycol. 2005;41:506–14.

  16. 16.

    Sournia A. Form and function in marine phytoplankton. Biological Reviews. 1982;57:347–94.

  17. 17.

    Casabianca S, Penna A, Pecchioli E, Jordi A, Basterretxea G, Vernesi C Population genetic structure and connectivity of the harmful dinoflagellate Alexandrium minutum in the Mediterranean Sea. Proceedings Biological sciences. 2012;279(1726):129–38.

  18. 18.

    Rengefors K, Logares R, Laybourn‐Parry J, Gast RJ. Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environ Microbiol. 2015;17:1510–9.

  19. 19.

    Sjöqvist C, Godhe A, Jonsson P, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient. Mol Ecol. 2015;24:2871–85.

  20. 20.

    Sassenhagen I, Sefbom J, Säll T, Godhe A, Rengefors K. Freshwater protists do not go with the flow: Population structure in Gonyostomum semen independent of connectivity among lakes. Environ Microbiol. 2015;17:5063–72.

  21. 21.

    Dia A, Guillou L, Mauger S, Bigeard E, Marie D, Valero M, et al. Spatiotemporal changes in the genetic diversity of harmful algal blooms caused by the toxic dinoflagellate Alexandrium minutum. Mol Ecol. 2014;23:549–60.

  22. 22.

    Härnström K, Ellegaard M, Andersen TJ, Godhe A Hundred years of genetic structure in a sediment revived diatom population. Proceedings of the National Academy of Sciences. 2011;108(10):4252–7.

  23. 23.

    Von Dassow P, Montresor M. Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J Plankton Res. 2010;33:3–12.

  24. 24.

    Binder BJ, Anderson DM. Biochemical composition and metabolic activity of Scrippsiella trochoidea (Dinophyceae) resting cysts. J Phycol. 1990;26:289–98.

  25. 25.

    Hensen V. Über die Bestimmung des Planktons oder des im Meere treibenden Materials an Pflanzen und Tieren. Schmidt & Klaunig;1887. Kiel, Germany.

  26. 26.

    Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun. 2011;2:311.

  27. 27.

    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119.

  28. 28.

    Brendonck L, De Meester L. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia. 2003;491:65–84.

  29. 29.

    Andrewartha H. Diapause in relation to the ecology of insects. Biological Reviews. 1952;27:50–107.

  30. 30.

    Vitalis R, Glémin S, Olivieri I. When genes go to sleep: the population genetic consequences of seed dormancy and monocarpic perenniality. Am Nat. 2004;163:295–311.

  31. 31.

    Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K. Can a seed bank maintain the genetic variation in the above ground plant population? Oikos. 2008;117:1–5.

  32. 32.

    McCue K, Holtsford T. Seed bank influences on genetic diversity in the rare annual Clarkia springvillensis (Onagraceae). Am J Bot. 1998;85:30.

  33. 33.

    Templeton AR, Levin DA. Evolutionary consequences of seed pools. Am Nat. 1979;114:232–49.

  34. 34.

    Hedrick PW. Genetic polymorphism in a temporally varying environment: effects of delayed germination or diapause. Heredity. 1995;75:164.

  35. 35.

    Chesson PL. The storage effect in stochastic population models. In: Levin S.A., Hallam T.G. (eds) Mathematical Ecology. Lecture Notes in Biomathematics, vol 54. Springer, Berlin, Heidelberg, 1984;54:76–89.

  36. 36.

    Hairston NG Jr, De Stasio BT Jr. Rate of evolution slowed by a dormant propagule pool. Nature. 1988;336:239.

  37. 37.

    Boileau MG, Hebert PD, Schwartz SS. Non‐equilibrium gene frequency divergence: persistent founder effects in natural populations. J Evol Biol. 1992;5:25–39.

  38. 38.

    De Meester L, Gómez A, Okamura B, Schwenk K. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta oecologica. 2002;23:121–35.

  39. 39.

    Rengefors K, Kremp A, Reusch TB, Wood AM. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J Plankton Res. 2017;39:165–79.

  40. 40.

    McQuoid MR, Hobson LA. Diatom resting stages. J Phycol. 1996;32:889–902.

  41. 41.

    Jost L. GST and its relatives do not measure differentiation. Mol Ecol. 2008;17:4015–26.

  42. 42.

    Vieira MLC, Santini L, Diniz AL, Munhoz CdF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39:312–28.

  43. 43.

    Walker LM. Evidence for a sexual cycle in the Florida red tide dinoflagellate, Ptychodiscus brevis (=Gymnodinium breve). Transactions of the American Microscopical Society. 1982;101:287–93.

  44. 44.

    Persson A, Smith BC, Morton S, Shuler A, Wikfors GH. Sexual life stages and temperature dependent morphological changes allow cryptic occurrence of the Florida red tide dinoflagellate Karenia brevis. Harmful Algae. 2013;30:1–9.

  45. 45.

    Goodman, D.K. Dinoflagellate cysts in ancient and modern sediments in The Biology of Dinoflagellates, Botanical Monographs (ed. Taylor F.JR) 649–722 (Blackwell, 1987) Oxford.

  46. 46.

    Montagnes DJ, Lowe CD, Martin L, Watts PC, Downes-Tettmar N, Yang Z, et al. Oxyrrhis marina growth, sex and reproduction. J Plankton Res. 2010;33:615–27.

  47. 47.

    McQuoid MR, Godhe A. Recruitment of coastal planktonic diatoms from benthic versus pelagic cells: Variations in bloom development and species composition. Limnol Oceanogr. 2004;49:1123–33.

  48. 48.

    Montresor M, Di Prisco C, Sarno D, Margiotta F, Zingone A. Diversity and germination patterns of diatom resting stages at a coastal Mediterranean site. Mar Ecol Prog Ser. 2013;484:79–95.

  49. 49.

    Orlova TY, Morozova T. Resting stages of microalgae in recent marine sediments of Peter the Great Bay, Sea of Japan. Russian journal of marine biology. 2009;35:313–22.

  50. 50.

    Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources. 2006;6:288–95.

  51. 51.

    Hairston NG. Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr. 1996;41:1087–92.

  52. 52.

    Godhe A, Härnström K. Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi. Mol Ecol. 2010;19:4478–90.

  53. 53.

    Anderson DM, Keafer BA, Kleindinst JL, McGillicuddy DJ Jr, Martin JL, Norton K, et al. Alexandrium fundyense cysts in the Gulf of Maine: long-term time series of abundance and distribution, and linkages to past and future blooms. Deep Sea Research Part II: Topical Studies in Oceanography. 2014;103:6–26.

  54. 54.

    Anderson D, Chisholm S, Watras C. Importance of life cycle events in the population dynamics of Gonyaulax tamarensis. Marine Biology. 1983;76:179–89.

  55. 55.

    Heaney S, Chapman D, Morison H. The role of the cyst stage in the seasonal growth of the dinoflagellate Ceratium hirundinella within a small productive lake. British Phycological. Journal. 1983;18:47–59.

  56. 56.

    Rengefors K. Seasonal succession of dinoflagellates coupled to the benthic cyst dynamics in Lake Erken. Ergebnisse der Limnologie. 1998;51:123–41.

  57. 57.

    Lundholm N, Ribeiro S, Andersen TJ, Koch T, Godhe A, Ekelund F, et al. Buried alive–germination of up to a century-old marine protist resting stages. Phycologia. 2011;50:629–40.

  58. 58.

    Kremp A, Oja J, LeTortorec AH, Hakanen P, Tahvanainen P, Tuimala J, et al. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environ Microbiol. 2016;18:679–91.

  59. 59.

    Shull DH, Kremp A, Mayer LM. Bioturbation, germination and deposition of Alexandrium fundyense cysts in the Gulf of Maine. Deep Sea Research Part II: Topical Studies in Oceanography. 2014;103:66–78.

  60. 60.

    De Meester L. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience. 1996;3:385–99.

  61. 61.

    Gómez A, Adcock G, Lunt D, Carvalho G. The interplay between colonization history and gene flow in passively dispersing zooplankton: microsatellite analysis of rotifer resting egg banks. J Evol Biol. 2002;15:158–71.

  62. 62.

    Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479.

  63. 63.

    Anderson DM. Cysts as factors in Pyrodinium bahamense ecology. In: Biology, epidemiology and management of Pyrodinium red tides ICLARM Conference Proceedings (ed. Hallegraeff GM, Maclean JL), Fisheries Department, Manila, Philippines. 1989;81–89.

  64. 64.

    Orsini L, Schwenk K, De Meester L, Colbourne JK, Pfrender ME, Weider LJ. The evolutionary time machine: forecasting how populations can adapt to changing environments using dormant propagules. Trends in ecology & evolution. 2013;28:274.

  65. 65.

    Masseret E, Grzebyk D, Nagai S, Genovesi B, Lasserre B, Laabir M, Collos Y, Vaquer A, Berrebi P. Unexpected genetic diversity among and within populations of the toxic dinoflagellate Alexandrium catenella as revealed by nuclear microsatellite markers. Appl Environ Microbiol. 2009;75:2037–45.

  66. 66.

    Richlen ML, Erdner DL, McCauley LA, Libera K, Anderson DM. Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA. Ecol Evol. 2012;2:2588–99.

  67. 67.

    Erdner DL, Richlen M, McCauley LA, Anderson DM. Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense. PLoS One. 2011;6:e22965.

  68. 68.

    Nagai S, Yasuike M, Nakamura Y, Tahvanainen P, Kremp A. Development of ten microsatellite markers for Alexandrium ostenfeldii, a bloom-forming dinoflagellate producing diverse phycotoxins. J Appl Phy. 2015;27:2333–9.

  69. 69.

    Genovesi B, Berrebi P, Nagai S, Reynaud N, Wang J, Masseret E. Geographic structure evidenced in the toxic dinoflagellate Alexandrium pacificum Litaker (A. catenella–group IV (Whedon & Kofoid) Balech) along Japanese and Chinese coastal waters. Mar Pollut Bull. 2015;98:95–105.

  70. 70.

    Alpermann TJ, Beszteri B, John U, Tillmann U, Cembella AD. Implications of life‐history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense. Mol Ecol. 2009;18:2122–33.

  71. 71.

    Alpermann TJ, Tillmann U, Beszteri B, Cembella AD, John U. Phenotypic variation and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae). J Phy. 2010;46:18–32.

  72. 72.

    Van den Wyngaert S, Möst M, Freimann R, Ibelings BW, Spaak P. Hidden diversity in the freshwater planktonic diatom Asterionella formosa. Mol Ecol. 2015;24:2955–72.

  73. 73.

    Nagai S, Nishitani G, Sakamoto S, Sugaya T, Lee C, Kim C, Itakura S, Yamaguchi M. Genetic structuring and transfer of marine dinoflagellate Cochlodinium polykrikoides in Japanese and Korean coastal waters revealed by microsatellites. Mol Ecol. 2009;18:2337–52.

  74. 74.

    Rynearson TA, Virginia Armbrust E. Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J Phycol. 2004;40:34–43.

  75. 75.

    Rynearson TA, Armbrust E. Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol Ecol. 2005;14:1631–40.

  76. 76.

    Rynearson TA, Lin EO, Armbrust EV. Metapopulation structure in the planktonic diatom Ditylum brightwellii (Bacillariophyceae). Protist. 2009;160:111–21.

  77. 77.

    Cook SS, Jones RC, Vaillancourt RE, Hallegraeff GM. Genetic differentiation among Australian and Southern Ocean populations of the ubiquitous coccolithophore Emiliania huxleyi (Haptophyta). Phycologia. 2013;52:368–74.

  78. 78.

    Krueger-Hadfield SA, Balestreri C, Schroeder J, Highfield A, Helaouët P, Allum J, Moate R, Lohbeck KT, Miller P & Riebesell U (2014) Genotyping an Emiliania huxleyi (Prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction. Biogeosciences 5215.

  79. 79.

    Henrichs DW, Renshaw MA, Gold JR, Campbell L. Population-genetic structure of the toxic dinoflagellate Karenia brevis from the Gulf of Mexico. J Plankton Res. 2013;35:427–32.

  80. 80.

    Lowe CD, Montagnes DJ, Martin LE, Watts PC. High genetic diversity and fine-scale spatial structure in the marine flagellate Oxyrrhis marina (Dinophyceae) uncovered by microsatellite loci. PLoS One. 2010;5:e15557.

  81. 81.

    Adams N, Trainer V, Rocap G, Herwig R, Hauser L. Genetic population structure of Pseudo-nitzschia pungens (Bacillariophyceae) from the Pacific Northwest and the North Sea. J Phycol. 2009;45:1037–45.

  82. 82.

    Casteleyn G, Evans KM, Backeljau T, D’hondt S, Chepurnov VA, Sabbe K, Vyverman W. Lack of population genetic structuring in the marine planktonic diatom Pseudo-nitzschia pungens (Bacillariophyceae) in a heterogeneous area in the Southern Bight of the North Sea. Marine Biol. 2009;156:1149–58.

  83. 83.

    Casteleyn G, Leliaert F, Backeljau T, Debeer A-E, Kotaki Y, Rhodes L, Lundholm N, Sabbe K, Vyverman W. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci. 2010;107:12952–7.

  84. 84.

    Tesson SV, Borra M, Kooistra WH, Procaccini G. Microsatellite primers in the planktonic diatom Pseudo-nitzschia multistriata (Bacillariophyceae). Am J Bot. 2011;98:e33–e35.

  85. 85.

    Tesson SV, Montresor M, Procaccini G, Kooistra WH. Temporal changes in population structure of a marine planktonic diatom. PLoS One. 2014;9:e114984.

  86. 86.

    Evans KM, Chepurnov VA, Sluiman HJ, Thomas SJ, Spears BM, Mann DG. Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist. 2009;160:386–96.

  87. 87.

    Godhe A, Sjöqvist C, Sildever S, Sefbom J, Harðardóttir S, Bertos-Fortis M, Bunse C, Gross S, Johansson E, Jonsson PR. Physical barriers and environmental gradients cause spatial and temporal genetic differentiation of an extensive algal bloom. J Biogeogr. 2016;43:1130–42.

Download references

Acknowledgements

We want to thank all the authors of the papers which data was used in our diversity analysis. Raw microsatellite data from these papers were kindly provided by Deana Erdner, Mindy Richlen, Anke Kremp, Silvia Casabianca, Aliou Dia, Tilman Alpermann, Silke Van den Wyngeart, Tatiana Rynearson, Stacy Krueger-Hadfield, Nicolaus Adams, Griet Castelyn, Sylvie Tesson, Gustaaf Hallegraeff and Suellen Cook. We also want to thank Fabian Roger for valuable help with the diversity analysis. LS and PRJ were funded through the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg (www.cemeb.science.gu.se/) and the Swedish Research Council. AG and JS were funded through Swedish Research Council Formas (219-2012-2070).

Author information

Affiliations

  1. Department of Marine Sciences, University of Gothenburg, Box 461, Göteborg, SE, 40530, Sweden

    • Lisa Sundqvist
    • , Anna Godhe
    •  & Josefin Sefbom
  2. Department of Marine Sciences - Tjärnö, University of Gothenburg, Strömstad, SE, 45296, Sweden

    • Per R. Jonsson
  3. Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, Gent, B-9000, Belgium

    • Josefin Sefbom

Authors

  1. Search for Lisa Sundqvist in:

  2. Search for Anna Godhe in:

  3. Search for Per R. Jonsson in:

  4. Search for Josefin Sefbom in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Josefin Sefbom.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41396-018-0216-8