Article | Published:

Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes

The ISME Journalvolume 12pages26192639 (2018) | Download Citation


The functional metagenomic potential of Shark Bay microbial mats was examined for the first time at a millimeter scale, employing shotgun sequencing of communities via the Illumina NextSeq 500 platform in conjunction with defined chemical analyses. A detailed functional metagenomic profile has elucidated key pathways and facilitated inference of critical microbial interactions. In addition, 87 medium-to-high-quality metagenome-assembled genomes (MAG) were assembled, including potentially novel bins under the deep-branching archaeal Asgard group (Thorarchaetoa and Lokiarchaeota). A range of pathways involved in carbon, nitrogen, sulfur, and phosphorus cycles were identified in mat metagenomes, with the Wood–Ljungdahl pathway over-represented and inferred as a major carbon fixation mode. The top five sets of genes were affiliated to sulfate assimilation (cysNC cysNCD, sat), methanogenesis (hdrABC), Wood–Ljungdahl pathways (cooS, coxSML), phosphate transport (pstB), and copper efflux (copA). Polyhydroxyalkanoate (PHA) synthase genes were over-represented at the surface, with PHA serving as a potential storage of fixed carbon. Sulfur metabolism genes were highly represented, in particular complete sets of genes responsible for both assimilatory and dissimilatory sulfate reduction. Pathways of environmental adaptation (UV, hypersalinity, oxidative stress, and heavy metal resistance) were also delineated, as well as putative viral defensive mechanisms (core genes of the CRISPR, BREX, and DISARM systems). This study provides new metagenome-based models of how biogeochemical cycles and adaptive responses may be partitioned in the microbial mats of Shark Bay.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Dupraz C, Visscher PT. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 2005;13:429–38.

  2. 2.

    Allen MA, Goh F, Burns BP, Neilan BA. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology. 2009;7:82–96.

  3. 3.

    Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimetre scale in Shark Bay microbial mats. Sci Rep. 2015;5:15607.

  4. 4.

    Burns BP, Goh F, Allen M, Neilan BA. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol. 2004;6:1096.

  5. 5.

    Ruvindy R, White RA III, Neilan BA, Burns BP. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J. 2016;10:183–96.

  6. 6.

    Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 2013;7:50–60.

  7. 7.

    Kunin V, Raes J, Harris JK, Walker JJ, Ivanova N, von Mering C, et al. Millimetre-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol Syst Biol. 2008;4:198–203.

  8. 8.

    Schneider D, Arp G, Reimer A, Reitner J, Daniel R. Phylogenetic analysis of a microbialte-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. Plos One. 2013;8:1–14.

  9. 9.

    White RA III, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF, et al. Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community. Front Microbiol. 2015a;6:1531.

  10. 10.

    Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, et al. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ Microbiol. 2009;11:16–34.

  11. 11.

    Kozubal MA, Romine M, Jennings R, Jay ZJ, Tringe SG, Rusch DB, et al. Geoarchaeota: a new candidate phylum in the archaea from high-tempearture acidic iron mats in Yellowstone National Park. ISME J. 2013;7:622–34.

  12. 12.

    López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles. 2005;9:263–74.

  13. 13.

    Saghaï A, Zivanovic Y, Moreira D, Benzerara K, Bertolino P, Ragon M et al. Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ Microbiol. 2016.

  14. 14.

    Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG, Ward DM, et al. The dark side of the Mushroom Spring microbial mat: Life in the shadow of chlorophototrophs. Front Microbiol. 2016;7:919.

  15. 15.

    White RA III, Power IM, Dipple GM, Southam G, Suttle CA. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front Microbiol. 2015b;6:966.

  16. 16.

    Jahnert RJ, Collins LB. Significance of subtidal microbial deposits in Shark Bay, Australia. Mar Geol. 2011;286:106–11.

  17. 17.

    van Kranendonk MJ, Philippot P, Lepot K, Bodrokos S, Piranjno F. Geological setting of Earth’s oldest fossils in the ca. 3.5 GA Dresser formation, Pilbara Craton, Western Australia. Precambrian Res. 2008;167:93–124.

  18. 18.

    Bauld J. (1984). Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In Cohen Y, Castenholz RW, Halvorson HO (Eds) Microbial mats: Stromatolites. Alan R Liss Inc, New York, pp. 39-58.

  19. 19.

    Palmisano AC, Summons RE, Cronin SE, Des Marais DJ. Lipophilic pigments from cyanobacterial (Blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia. J Phycol. 1989;25:633–61.

  20. 20.

    Visscher PT, Dupraz C, Braissant O, Gallagher KL, Glunk C, Casillas L, et al. Biogeochemistry of carbon cycling in hypersaline mats: linking the present to the past through biosignatures, In Microbioal Mats. Springer: Netherlands, 2010, pp 443-468.

  21. 21.

    Wong HL, Visscher PT, White RA, Smith D-L, Patterson M, Burns BP. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci Rep. 2017;8:46160.

  22. 22.

    Wong HL, Ahmed-Cox A, Burns BP. Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms. 2016;4:6.

  23. 23.

    Pagès A, Welsh DT, Teasdale PR, Grice K, Vacher M, Bennett WW, et al. Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar Chem. 2014;167:102–12.

  24. 24.

    Grünke S, Felden J, Lichtschlag A, Girnth AC, de Beer D, Wenzhöfer F, et al. Niche differentiation among mat-forming, sulphide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology. 2011;9:330–48.

  25. 25.

    Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J. 2008;2:590–601.

  26. 26.

    Visscher PT, Stolz JF. Microbial mats as bioreactors: Populations, processes, and products. Palaeogeo Palaeoclim Palaeoecol. 2005;219:87–100.

  27. 27.

    Decho AW, Norman RS, Visscher PT. Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol. 2010;18:73–80.

  28. 28.

    Gallagher KL, Kading TJ, Braissant O, Dupraz C, Visscher PT. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology. 2012;10:518–30.

  29. 29.

    Sugimura Y, Suzuki Y. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar Chem. 1988;24:105–31.

  30. 30.

    Johnson KS, Petty RL. Determination of nitrate and nitrite in seawater by flow injection analysis. Limnol Ocean. 1983;28:1260–6.

  31. 31.

    White RA III, Brown J, Colby S, Overall CC, Lee JY, Zucker J, et al. ATLAS (Automatic Tool for Local Assembly Structures) – a comprehensive infrastructure for assembly, annotation, and genomic binning of metagenomic and metatranscriptomic data. PeerJ. 2017;5:e2843v1.

  32. 32.

    Magoc T, Salzberg S. Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.

  33. 33.

    Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.

  34. 34.

    Bolger A, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

  35. 35.

    Li D, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

  36. 36.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prodaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.

  37. 37.

    Buchfink B, et al. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

  38. 38.

    O'Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.

  39. 39.

    Huerta-Cepas J, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.

  40. 40.

    Yin Y, et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:445–51.

  41. 41.

    Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–5.

  42. 42.

    Tatusov RL, et al. The COG database: an updated version includes eukaryotes. BMC Bioinforma. 2003;4:41.

  43. 43.

    Finn RD, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:279–85.

  44. 44.

    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

  45. 45.

    Hanson NW, et al. LCA*: an entropy-based measure for taxonomic assignment within assembled metagenomes. Bioinformatics. 2016;32:3535–42.

  46. 46.

    Liao Y, et al. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

  47. 47.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

  48. 48.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

  49. 49.

    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

  50. 50.

    Lowe TM, Chan PP. tRNAscan-SE On-line: Search and contextual analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–57.

  51. 51.

    Richter M, Rosselló-Móra R, Oliver Glöcker F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015;32:929–31.

  52. 52.

    Darling AE, Jospin G, Lowe E, Matsen IV, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. Peer J. 2014;2:e243.

  53. 53.

    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034. Article no

  54. 54.

    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.

  55. 55.

    Csárdi G, Nepusz T. The Igraph software package for complex network research. Inter J Complex Syst. 2006;1695:1–9.

  56. 56.

    Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9:1069–76.

  57. 57.

    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

  58. 58.

    Criscuolo A, Gribaldo S. BMGE (Block mapping and gathering with entrophy): a new software for selection of phylogeneticv informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.

  59. 59.

    Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 2013;1:22.

  60. 60.

    Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35:518–22.

  61. 61.

    Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.

  62. 62.

    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.

  63. 63.

    Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol. 2015;25:690–701.

  64. 64.

    Bernstein HC, Brislawn C, Renslow RS et al. Trade-offs between microbiome diversity and productivity in a stratified microbial mat. ISME J. 2016. 2016.133.

  65. 65.

    Sato T, Atomi H, Imanaka T. Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism. Science. 2007;315:1003–6.

  66. 66.

    Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, et al. Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME J. 2012;6:863–74.

  67. 67.

    Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, et al. Sulfate-reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sediment Geol. 2006;185:131–45.

  68. 68.

    Kurth D, Amadio A, Ordoñez OF, Albarracin VH, Gärtner W, Farias ME. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep. 2017;7:1024.

  69. 69.

    Leuko S, Neilan BA, Burns BP, Walter MR, Rothschild LJ. Molecular assessment of UVC radiation-induced damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. J Photoch Photobio 2011;B102:140–5.

  70. 70.

    Khan SR, Kuzminov A. Replication forks stalled at ultraviolet lesions are rescued via RecA and RuvABC protein-catalyzed disintegration in Escherichia coli. J Biol Chem. 2012;287:6250–65.

  71. 71.

    Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70.

  72. 72.

    Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol. 2017;3:90–8.

  73. 73.

    Sørensen K, Canfield D, Teske A, Oren A. Community Composition of a Hypersaline Endoevaporitic Microbial Mat. Appl Environ Microbiol. 2005;71:7352–65.

  74. 74.

    Burns BP, Anitori R, Butterworth P, Henneberger R, Goh F, Allen M, et al. Modern analogues and the early history of microbial life. Precambrian Res. 2009;173:10–8.

  75. 75.

    Visscher PT, Prin RA, van Gemerden H. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Lett. 1992;86:283–8.

  76. 76.

    Canfield D, Des Marais D. Aerobic sulfate reduction in microbial mats. Science. 1991;251:1471–3.

  77. 77.

    Jørgensen B. Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol Ecol. 1994;13:303–12.

  78. 78.

    Say RF, Fuchs G. Fructose 1, 6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature. 2010;464:1077.

  79. 79.

    Casamayor EO, Triadó-Margarit X, Castañeda C. Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiol Ecol. 2013;85:503–18.

  80. 80.

    Saghaï A, Gutiérrez-Preciado A, Deschamps P, Moreira D, Bertolino P, Ragon M, et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ Microbiol. 2017;19:2405–21.

  81. 81.

    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.

  82. 82.

    Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front Microbiol. 2016;7:211.

  83. 83.

    King GM. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. PNAS. 2015;112:4465–70.

  84. 84.

    Weiss M, Sousa F, Mrnjavac N, Neukirchen S, Nelson-Sathi S, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1:16116.

  85. 85.

    Fuchs G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol. 2011;65:631–58.

  86. 86.

    Braissant O, Decho AW, Przekop KM, Glunk C, Dupraz C, Visscher PT. Characteristics and turnover of exopolymeric substances (EPS) in a hypersaline microbial mat. FEMS Microbiol Ecol. 2009;67:293–307.

  87. 87.

    Kadnikov VV, Mardanov AV, Podosokorskava OA, Gavrilov SN, Kublanov IV, Beletsky AV, et al. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteroidetes/Chlorobi group. PLoS One. 2013;8:e53047.

  88. 88.

    Marvasi M, Visscher P, Casillas Martinez L. Exopolymeric substances from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett. 2010;313:1–9.

  89. 89.

    Stuart RK, Mayali X, Lee JZ, Everroad RC, Bebout BM, et al. Cyanobacteria reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.

  90. 90.

    Bateson MM, Castenholz R. Photoexcretion and fate of glycolate in a hotspring cyanobacterial mat. Appl Environ Microbiol. 1988;54:1738–43.

  91. 91.

    Füser G, Steinbüchel A. Analysis of genome sequences for genes of cyanophycin metabolism: Identifiying putative cyanophycin metabolizing prokaryotes. Macromol Biosci. 2007;7:278–96.

  92. 92.

    Liang B, Wu TD, Sun HJ, Vali H, Guerquin-Kern JL, Wang CH, et al. Cyanophycin mediates the accumulation and storage of fixed carbon in non-heterocystous filamentous Cyanobacteria from coniform mats. Plos One. 2014;9:e88142.

  93. 93.

    Villanueva L, del Campo J, Guerrero R. Diversity and physiology of polyhydroxyalkanoate-producing and-degrading strains in microbial mats. FEMS Microbiol Ecol. 2010;74:42–54.

  94. 94.

    Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.

  95. 95.

    Sousa FL, and Martin WF. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. BBA-Bioenergetics 2014;1837:964–81.

  96. 96.

    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JK, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME 2018;J12:1021.

  97. 97.

    Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, et al. Single-cell genome and group-specific dsrAB sequencing implicate marine members of the class Dehalococcoidia (Phylum Chloroflexi) in sulfur cycling. MBio. 2016;7:e00266–16.

  98. 98.

    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, Rappé MS, Pester M, Loy A, Thomas BC, Banfield JF. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018.

  99. 99.

    Baker BJ, Lazar CS, Teske AP, Dick GJ. Genomic resolution of linkages in carbon, nitrogen, and sulfur among widespread estuary sediment bacteria. Microbiome. 2015;3:14.

  100. 100.

    Visscher PT, and H. van Gemerden. Sulfur cycling in laminated marine ecosystems. In: Biogeochemistry of Global Change: Radiatively Active Trace Gases. R.S. Oremland (ed). Chapman and Hall, New York, 1993, pp. 672-69

  101. 101.

    Sforna MC, Daye M, Philippot P, Somogyi A, Van Zuilen MA, Medjoubi K, et al. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record. Geobiology. 2017.

  102. 102.

    Braissant O, Decho A, Dupraz C, Glunk C, Przekop K, Visscher P. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. 2007;5:401–11.

  103. 103.

    Mobberley JM, Lindemann SR, Bernstein HC, Moran JJ, Renslow RS, Babuta J, et al. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiol Ecol. 2017;93:10.1093.

  104. 104.

    Atkinson M. Low phosphorus sediments in a hypersaline marine bay. Estuar Coast Shelf S. 1987;24:335–47.

  105. 105.

    Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol. 1995;177:491–6.

  106. 106.

    Oren A. DNA as genetic material and as a nutrient in halophilic archaea. Front Microbiol. 2014;5:1–2.

  107. 107.

    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.

  108. 108.

    Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, et al. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev. 2007;31:692–720.

  109. 109.

    Skyring GW, Lynch RM, Smith GD. Quantitative relationships between carbon, hydrogen and sulfur metabolism in cyanobacterial mats. In Cohen Y, Rosenberg E. (ed). Microbial mats: Physiological ecology of benthic microbial communities American Society for Microbiology, Washington, DC, 1989, pp 170-179.

  110. 110.

    Boyd ES, Schut GJ, Adams MW, Peters JW. Hydrogen metabolism and the evolution of biological respiration. Microbe. 2014;9:361–7.

  111. 111.

    Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev. 2003;27:197–213.

  112. 112.

    Oremland R, Saltikov C, Wolfe-Simon F, Stolz J. Arsenic in the Evolution of Earth and Extraterrestrial Ecosystems. Geomicrobiol J. 2009;26:522–36.

  113. 113.

    Sforna MC, Philippot P, Somogyi A, van Zuilen MA, Medjoubi K, Schoepp-Cothenet B, et al. Evidence for arsenic metabolism and cycling by microorgansisms 2.7 billion years ago. Nat Geosci. 2014;7:811–5.

  114. 114.

    van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic substrates. Biochim Biophys Acta. 2013;1827:176–88.

  115. 115.

    Goh F, Barrow KD, Burns BP, Neilan BA. Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Arch Microbiol. 2010;192:1031–8.

  116. 116.

    Goh F, Jeon YJ, Barrow K, Neilan BA, Burns BP. Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolie environment. Astrobiology. 2011;11:529–36.

  117. 117.

    Garcia-Pichel F, Castenholz RW. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol. 1993;59:163–9.

  118. 118.

    Wright D, Smith S, Joardar V, Scherer S, Jervis J, Warren A, et al. UV Irradiation and Desiccation Modulate the Three-dimensional Extracellular Matrix of Nostoc commune (Cyanobacteria). J Biol Chem. 2005;280:40271–81.

  119. 119.

    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.

  120. 120.

    Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Shaked Afik, et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 2015;34:169–83.

  121. 121.

    Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, et al. Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ Microbiol. 2009;11:409–20.

  122. 122.

    Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill MEA. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell. 2002;9:685–94.

  123. 123.

    Decho AW, Frey RL, Ferry JL. Chemical challenges to bacterial AHL signalling in the environment. Chem Rev. 2011;111:86–99.

  124. 124.

    Dong YH, Wang LH, Xu JL, Zhang HB, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001;411:813–7.

  125. 125.

    Romero M, Diggle SP, Heeb S, Cámara M, Otero A. Quorum quenching activity in Anabaena sp. PCC7120: Identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett. 2008;280:73–80.

  126. 126.

    Paerl HW, Pinckney JL, Kucera SA. Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol Oceanogr. 1995;40:634–8.

Download references


This work was supported by the Australian Research Council and the National Science Foundation (NSF EAR 1052974). No competing financial interests exist.

Author information


  1. School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia

    • Hon Lun Wong
    • , James C. Charlesworth
    • , Xabier Vázquez-Campos
    •  & Brendan P. Burns
  2. Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia

    • Hon Lun Wong
    • , Pieter T. Visscher
    • , James C. Charlesworth
    •  & Brendan P. Burns
  3. Institute of Biological Chemistry, Washington State University, Pullman, USA

    • Richard Allen White III
  4. Department of Marine Sciences, University of Connecticut, Storrs, CT, USA

    • Pieter T. Visscher


  1. Search for Hon Lun Wong in:

  2. Search for Richard Allen White III in:

  3. Search for Pieter T. Visscher in:

  4. Search for James C. Charlesworth in:

  5. Search for Xabier Vázquez-Campos in:

  6. Search for Brendan P. Burns in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Brendan P. Burns.

Electronic supplementary material

About this article

Publication history