Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent advances in nanoplatforms for the treatment of neuropathic pain

Abstract

Study design

Narrative review.

Objectives

The objective was to summarize the literature on nanoplatforms in spinal cord injury (SCI) and describe their effect in facilitating experiments for SCI. Currently, the primary clinical treatment for neuropathic pain (NP) is drug therapy, but these traditional drugs have many disadvantages, such as high dose, rapid clearance from the circulatory system, off-target side effects, and cytotoxicity. Moreover, the treatment for NP is complicated by the existence of blood–brain barrier. In recent years, nanomedicine has been receiving increased attention; this novel modality could help deliver drugs to treat NP via nanoplatforms, making it a promising alternative therapy. The use of nanoplatforms can enhance pharmaceutic effectiveness by either avoiding rapid clearance from the blood or ensuring adequate concentration in the lesion.

Methods

A literature review was conducted, with a focus on nanoplatforms that have been described in the experimental studies of neuropathic pain.

Results

We provide a brief description of the roles of liposomes, polymeric nanoparticles, metal nanoparticles, micelles, and dendrimers in the treatment of NP and discuss the prospective development of the nanoplatform system for NP.

Conclusion

The emergence of various nanoplatform drug delivery systems can provide an advantageous resource tool for real-time diagnosis and effective treatment of SCI-related NP.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Intrathecal injection of PLGA-encapsulated CX3CR1 siRNA nanoparticles alleviates the neuropathic pain induced by spinal cord ligation in rats.
Fig. 2: 7CZ-Ab NPs can rapidly inhibit the activation of microglia cells and downregulate the ROS and proinflammatory cytokines, thus it can quickly and effectively treat neuropathic pain in rats.
Fig. 3: Structure chart of nanomicelles structures loaded with sPLA2 inhibitors and their application in rat models of neuropathic pain.

Data availability

Previously reported data were used to support this study and are available at DOI. These prior studies (and datasets) are cited at relevant places within the text as references.

References

  1. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9:807–19. https://doi.org/10.1016/s1474-4422(10)70143-5.

    Article  PubMed  Google Scholar 

  2. Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: identification and treatment strategies in the 21st century. J Neurol Sci. 2018;384:75–83. https://doi.org/10.1016/j.jns.2017.11.018.

    Article  PubMed  Google Scholar 

  3. Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives. Neurotherapeutics. 2018;15:635–53. https://doi.org/10.1007/s13311-018-0633-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu M, Li K, Wang Y, Zhao G, Jiang J. Stem cells in the treatment of neuropathic pain: research progress of mechanism. Stem Cells Int. 2020;2020:8861251. https://doi.org/10.1155/2020/8861251.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Umlauf BJ, Shusta EV. Exploiting BBB disruption for the delivery of nanocarriers to the diseased CNS. Curr Opin Biotechnol. 2019;60:146–52. https://doi.org/10.1016/j.copbio.2019.01.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol. 2019;130:515–26. https://doi.org/10.1016/j.ijbiomac.2019.02.156.

    CAS  Article  PubMed  Google Scholar 

  7. Cerqueira SR, Ayad NG, Lee JK. Neuroinflammation treatment via targeted delivery of nanoparticles. Front Cell Neurosci. 2020;14:576037. https://doi.org/10.3389/fncel.2020.576037.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Tomitaka A, Kaushik A, Kevadiya BD, Mukadam I, Gendelman HE, Khalili K, et al. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Disco Today. 2019;24:873–82. https://doi.org/10.1016/j.drudis.2019.01.006.

    CAS  Article  Google Scholar 

  9. Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–31. https://doi.org/10.1016/j.colsurfb.2017.07.038.

    CAS  Article  PubMed  Google Scholar 

  10. Durán V, Yasar H, Becker J, Thiyagarajan D, Loretz B, Kalinke U, et al. Preferential uptake of chitosan-coated PLGA nanoparticles by primary human antigen presenting cells. Nanomedicine. 2019;21:102073. https://doi.org/10.1016/j.nano.2019.102073.

    CAS  Article  PubMed  Google Scholar 

  11. Xu Q, Xing H, Wu J, Chen W, Zhang N. miRNA-141 induced pyroptosis in intervertebral disk degeneration by targeting ROS generation and activating TXNIP/NLRP3 signaling in nucleus pulpous cells. Front Cell Dev Biol. 2020;8:871. https://doi.org/10.3389/fcell.2020.00871.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Zhou G, Xu N. Effect of metformin nanoparticle-mediated thioredoxin interacting protein expression on oxaliplatin-induced peripheral neuralgia. J Nanosci Nanotechnol. 2020;20:6123–32. https://doi.org/10.1166/jnn.2020.18508.

    CAS  Article  PubMed  Google Scholar 

  13. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77. https://doi.org/10.1038/nmat3765.

    CAS  Article  PubMed  Google Scholar 

  14. Shin J, Yin Y, Park H, Park S, Triantafillu UL, Kim Y, et al. p38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine. 2018;13:1607–21. https://doi.org/10.2217/nnm-2018-0054.

    CAS  Article  PubMed  Google Scholar 

  15. Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018;14:1596–619. https://doi.org/10.1080/15548627.2018.1476810.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci. 2017;74:3275–91. https://doi.org/10.1007/s00018-017-2513-1.

    CAS  Article  PubMed  Google Scholar 

  17. Noh C, Shin HJ, Lee S, Kim SI, Kim YH, Lee WH, et al. CX3CR1-targeted PLGA nanoparticles reduce microglia activation and pain behavior in rats with spinal nerve ligation. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21103469.

  18. Hering I, Eilebrecht E, Parnham MJ, Günday-Türeli N, Türeli AE, Weiler M, et al. Evaluation of potential environmental toxicity of polymeric nanomaterials and surfactants. Environ Toxicol Pharmacol. 2020;76:103353. https://doi.org/10.1016/j.etap.2020.103353.

    CAS  Article  PubMed  Google Scholar 

  19. Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9:153–74. https://doi.org/10.1007/s40204-020-00139-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao Z, Li D, Wu Z, Wang Q, Ma Z, Zhang C. Research progress and prospect of nanoplatforms for treatment of oral cancer. Front Pharmacol. 2020;11:616101. https://doi.org/10.3389/fphar.2020.616101.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv. 2020;17:357–77. https://doi.org/10.1080/17425247.2020.1727883.

    CAS  Article  PubMed  Google Scholar 

  22. Sharma G, Chopra K, Puri S, Bishnoi M, Rishi P, Kaur IP. Topical delivery of TRPsiRNA-loaded solid lipid nanoparticles confer reduced pain sensation via TRPV1 silencing, in rats. J Drug Target. 2018;26:135–49. https://doi.org/10.1080/1061186x.2017.1350857.

    CAS  Article  PubMed  Google Scholar 

  23. Xu Y, Tan HY, Li S, Wang N, Feng Y. Panax notoginseng for inflammation-related chronic diseases: a review on the modulations of multiple pathways. Am J Chin Med. 2018;46:971–96. https://doi.org/10.1142/s0192415x18500519.

    CAS  Article  PubMed  Google Scholar 

  24. Estella-Hermoso de Mendoza A, Campanero MA, Mollinedo F, Blanco-Prieto MJ. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol. 2009;5:323–43. https://doi.org/10.1166/jbn.2009.1042.

    CAS  Article  PubMed  Google Scholar 

  25. Fonseca-Santos B, Silva PB, Rigon RB, Sato MR, Chorilli M. Formulating SLN and NLC as innovative drug delivery systems for non-invasive routes of drug administration. Curr Med Chem. 2020;27:3623–56. https://doi.org/10.2174/0929867326666190624155938.

    CAS  Article  PubMed  Google Scholar 

  26. Bell WL, Crawford IL, Shiu GK. Reduced bioavailability of moisture-exposed carbamazepine resulting in status epilepticus. Epilepsia. 1993;34:1102–4. https://doi.org/10.1111/j.1528-1157.1993.tb02140.x.

    CAS  Article  PubMed  Google Scholar 

  27. Elmowafy M, Shalaby K, Badran MM, Ali HM, Abdel-Bakky MS, Ibrahim HM. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm. 2018;550:359–71. https://doi.org/10.1016/j.ijpharm.2018.08.062.

    CAS  Article  PubMed  Google Scholar 

  28. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60. https://doi.org/10.1038/nrd1632.

    CAS  Article  PubMed  Google Scholar 

  29. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48. https://doi.org/10.1016/j.addr.2012.09.037.

    CAS  Article  PubMed  Google Scholar 

  30. Zhu Y, Wang M, Zhang J, Peng W, Firempong CK, Deng W, et al. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Arch Pharm Res. 2015;38:512–21. https://doi.org/10.1007/s12272-014-0481-7.

    CAS  Article  PubMed  Google Scholar 

  31. Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2018;3:Cd012182. https://doi.org/10.1002/14651858.CD012182.pub2.

    Article  PubMed  Google Scholar 

  32. Durán-Lobato M, Martín-Banderas L, Lopes R, Gonçalves LM, Fernández-Arévalo M, Almeida AJ. Lipid nanoparticles as an emerging platform for cannabinoid delivery: physicochemical optimization and biocompatibility. Drug Dev Ind Pharm. 2016;42:190–8. https://doi.org/10.3109/03639045.2015.1038274.

    CAS  Article  PubMed  Google Scholar 

  33. Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, et al. The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology. 2018;43:52–79. https://doi.org/10.1038/npp.2017.204.

    CAS  Article  PubMed  Google Scholar 

  34. Despres HW, Sabra A, Anderson P, Hemraz UD, Boluk Y, Sunasee R, et al. Mechanisms of the immune response cause by cationic and anionic surface functionalized cellulose nanocrystals using cell-based assays. Toxicol Vitr. 2019;55:124–33. https://doi.org/10.1016/j.tiv.2018.12.009.

    CAS  Article  Google Scholar 

  35. Villegas MR, Baeza A, Vallet-Regí M. Nanotechnological strategies for protein delivery. Molecules. 2018;23. https://doi.org/10.3390/molecules23051008.

  36. Navalón S, Álvaro M, Dhakshinamoorthy A, García H. Encapsulation of metal nanoparticles within metal-organic frameworks for the reduction of nitro compounds. Molecules. 2019;24. https://doi.org/10.3390/molecules24173050.

  37. Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19071979.

  38. Ilari S, Giancotti LA, Lauro F, Dagostino C, Gliozzi M, Malafoglia V, et al. Antioxidant modulation of sirtuin 3 during acute inflammatory pain: the ROS control. Pharm Res. 2020;157:104851. https://doi.org/10.1016/j.phrs.2020.104851.

    CAS  Article  Google Scholar 

  39. Janzadeh A, Karami Z, Hosseini M, Zarepour L, Yousefifard M, Nasirinezhad F. The role of CGRP receptor antagonist (CGRP8-37) and Endomorphin-1 combination therapy on neuropathic pain alleviation and expression of Sigma-1 receptors and antioxidants in rats. J Chem Neuroanat. 2020;106:101771. https://doi.org/10.1016/j.jchemneu.2020.101771.

    CAS  Article  PubMed  Google Scholar 

  40. Choi B, Soh M, Manandhar Y, Kim D, Han SI, Baik S, et al. Highly selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale. 2019;11:19437–47. https://doi.org/10.1039/c9nr02648g.

    CAS  Article  PubMed  Google Scholar 

  41. Zhao H, Alam A, Chen Q, Eusman MA, Pal A, Eguchi S, et al. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 2017;118:504–16. https://doi.org/10.1093/bja/aex006.

    CAS  Article  PubMed  Google Scholar 

  42. O’Mary HL, Hanafy MS, Aldayel AM, Valdes SA, Alzhrani RF, Hufnagel S, et al. Effect of the ratio of betamethasone to TNF-α siRNA coencapsulated in solid lipid nanoparticles on the acute proinflammatory activity of the nanoparticles. Mol Pharm. 2019;16:4496–506. https://doi.org/10.1021/acs.molpharmaceut.9b00629.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, et al. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain. 2015;156:1320–33. https://doi.org/10.1097/j.pain.0000000000000181.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Hadrup N, Lam HR. Oral toxicity of silver ions, silver nanoparticles and colloidal silver_a review. Regul Toxicol Pharmacol. 2014;68:1–7. https://doi.org/10.1016/j.yrtph.2013.11.002.

    CAS  Article  PubMed  Google Scholar 

  45. Sharma HS, Sharma A. Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets. 2012;11:65–80. https://doi.org/10.2174/187152712799960817.

    CAS  Article  PubMed  Google Scholar 

  46. Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J Drug Target. 2014;22:576–83. https://doi.org/10.3109/1061186x.2014.934688.

    CAS  Article  PubMed  Google Scholar 

  47. Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:691–707. https://doi.org/10.1002/wnan.1332.

    CAS  Article  PubMed  Google Scholar 

  48. Soubhye J, van Antwerpen P, Dufrasne F. Targeting cytosolic phospholipase A2α for novel anti-inflammatory agents. Curr Med Chem. 2018;25:2418–47. https://doi.org/10.2174/0929867325666180117103919.

    CAS  Article  PubMed  Google Scholar 

  49. Kartha S, Yan L, Ita ME, Amirshaghaghi A, Luo L, Wei Y, et al. Phospholipase A(2) inhibitor-loaded phospholipid micelles abolish neuropathic pain. ACS Nano. 2020;14:8103–15. https://doi.org/10.1021/acsnano.0c00999.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41. https://doi.org/10.1016/j.drugalcdep.2014.08.005.

    CAS  Article  PubMed  Google Scholar 

  51. Linsell O, Brownjohn PW, Nehoff H, Greish K, Ashton JC. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model. J Drug Target. 2015;23:353.

    CAS  Article  Google Scholar 

  52. Miller T, Rachel R, Besheer A, Uezguen S, Weigandt M, Goepferich A. Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm Res. 2012;29:448–59. https://doi.org/10.1007/s11095-011-0555-x.

    CAS  Article  PubMed  Google Scholar 

  53. Van Horn WD, Simorellis AK, Flynn PF. Low-temperature studies of encapsulated proteins. J Am Chem Soc. 2005;127:13553–60. https://doi.org/10.1021/ja052805i.

    CAS  Article  PubMed  Google Scholar 

  54. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51. https://doi.org/10.1038/nbt.3330.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Iaccarino G, Profeta M, Vecchione R, Netti PA. Matrix metalloproteinase-cleavable nanocapsules for tumor-activated drug release. Acta Biomater. 2019;89:265–78. https://doi.org/10.1016/j.actbio.2019.02.043.

    CAS  Article  PubMed  Google Scholar 

  56. Ding D, Xu Y, Zou Y, Chen L, Chen Z, Tan W. Graphitic nanocapsules: design, synthesis and bioanalytical applications. Nanoscale. 2017;9:10529–43. https://doi.org/10.1039/c7nr02587d.

    CAS  Article  PubMed  Google Scholar 

  57. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101:412–20.e3. https://doi.org/10.1016/j.neuron.2019.01.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Ramírez-García PD, Retamal JS, Shenoy P, Imlach W, Sykes M, Truong N, et al. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat Nanotechnol. 2019;14:1150–9. https://doi.org/10.1038/s41565-019-0568-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Chizh BA, Göhring M, Tröster A, Quartey GK, Schmelz M, Koppert W. Effects of oral pregabalin and aprepitant on pain and central sensitization in the electrical hyperalgesia model in human volunteers. Br J Anaesth. 2007;98:246–54. https://doi.org/10.1093/bja/ael344.

    CAS  Article  PubMed  Google Scholar 

  60. Wilhelm EA, Bortolatto CF, Nogueira CW. p-Methoxyl-diphenyl diselenide protects against cisplatin-induced renal toxicity in mice. Food Chem Toxicol. 2012;50:1187–93. https://doi.org/10.1016/j.fct.2012.02.037.

    CAS  Article  PubMed  Google Scholar 

  61. Marcondes Sari MH, Zborowski VA, Ferreira LM, Jardim NDS, Araujo PCO, Brüning CA, et al. Enhanced pharmacological actions of p,p’-methoxyl-diphenyl diselenide-loaded polymeric nanocapsules in a mouse model of neuropathic pain: Behavioral and molecular insights. J Trace Elem Med Biol. 2018;46:17–25. https://doi.org/10.1016/j.jtemb.2017.11.002.

    CAS  Article  PubMed  Google Scholar 

  62. Mayer C. Nanocapsules as drug delivery systems. Int J Artif Organs. 2005;28:1163–71. https://doi.org/10.1177/039139880502801114.

    CAS  Article  PubMed  Google Scholar 

  63. Chauhan AS. Dendrimers for drug delivery. Molecules. 2018;23. https://doi.org/10.3390/molecules23040938.

  64. Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548:707–20. https://doi.org/10.1016/j.ijpharm.2018.07.030.

    CAS  Article  PubMed  Google Scholar 

  65. Cooper TE, Chen J, Wiffen PJ, Derry S, Carr DB, Aldington D, et al. Morphine for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;5:Cd011669. https://doi.org/10.1002/14651858.CD011669.pub2.

    Article  PubMed  Google Scholar 

  66. Ward BB, Huang B, Desai A, Cheng XM, Vartanian M, Zong H, et al. Sustained analgesia achieved through esterase-activated morphine prodrugs complexed with PAMAM dendrimer. Pharm Res. 2013;30:247–56. https://doi.org/10.1007/s11095-012-0869-3.

    CAS  Article  PubMed  Google Scholar 

  67. Lee J, Kwon YE, Kim Y, Choi JS. Enhanced transfection efficiency of low generation PAMAM dendrimer conjugated with the nuclear localization signal peptide derived from herpesviridae. J Biomater Sci Polym Ed. 2021;32:22–41. https://doi.org/10.1080/09205063.2020.1815496.

    CAS  Article  PubMed  Google Scholar 

  68. Ghaffari M, Dehghan G, Abedi-Gaballu F, Kashanian S, Baradaran B, Ezzati Nazhad Dolatabadi J, et al. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur J Pharm Sci. 2018;122:311–30. https://doi.org/10.1016/j.ejps.2018.07.020.

    CAS  Article  PubMed  Google Scholar 

  69. Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ Toxicol Pharmacol. 2016;47:108–18. https://doi.org/10.1016/j.etap.2016.09.009.

    CAS  Article  PubMed  Google Scholar 

  70. Wang Z, Dong X, Sun Y. Mixed carboxyl and hydrophobic dendrimer surface inhibits amyloid-β fibrillation: new insight from the generation number effect. Langmuir. 2019;35:14681–7. https://doi.org/10.1021/acs.langmuir.9b02527.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Science and Technology Development Plan Projects of Jilin Province (Grant No. 20210101294JC), the Bethune project of Jilin University (Grant No. 2018A03)

Author information

Authors and Affiliations

Authors

Contributions

BY was responsible for conducting the search and writing the report; KW was responsible for interpreting results and text checking; XX was responsible for screening potentially eligible studies; JJ and YL contributed to experimental design and provided feedback on the article.

Corresponding authors

Correspondence to Yan Liu or Jinlan Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Wu, K., Xu, X. et al. Recent advances in nanoplatforms for the treatment of neuropathic pain. Spinal Cord 60, 594–603 (2022). https://doi.org/10.1038/s41393-021-00746-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41393-021-00746-x

Search

Quick links