Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sex-specific relationships of the infant microbiome and early-childhood behavioral outcomes

Abstract

Background

A link between the gut microbiome and behavior is hypothesized, but most previous studies are cross-sectional or in animal models. The modifying role of host sex is poorly characterized. We aimed to identify sex-specific prospective associations between the early-life gut microbiome and preschool-age neurobehavior.

Methods

In a prospective cohort, gut microbiome diversity and taxa were estimated with 16S rRNA sequencing at 6 weeks, 1 year, and 2 years. Species and gene pathways were inferred from metagenomic sequencing at 6 weeks and 1 year. When subjects were 3 years old, parents completed the Behavioral Assessment System for Children, second edition (BASC-2). A total of 260 children contributed 523 16S rRNA and 234 metagenomics samples to analysis. Models adjusted for sociodemographic characteristics.

Results

Higher diversity at 6 weeks was associated with better internalizing problems among boys, but not girls [βBoys = −1.86 points/SD Shannon diversity; 95% CI (−3.29, −0.42), pBoys = 0.01, βGirls = 0.22 (−1.43, 1.87), pGirls = 0.8, pinteraction = 0.06]. Among other taxa-specific associations, Bifidobacterium at 6 weeks was associated with Adaptive Skills scores in a sex-specific manner. We observed relationships between functional features and BASC-2 scores, including vitamin B6 biosynthesis pathways and better Depression scores.

Conclusions

This study advances our understanding of microbe−host interactions with implications for childhood behavioral health.

Impact

  • This is one of the first studies to examine the early-life microbiome and neurobehavior, and the first to examine prospective sex-specific associations.

  • Infant and early-childhood microbiomes relate to neurobehavior including anxiety, depression, hyperactivity, and social behaviors in a time- and sex-specific manner.

  • Our findings suggest future studies should evaluate whether host sex impacts the relationship between the gut microbiome and behavioral health outcomes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Effect estimates and 95% confidence intervals for a standard deviation increase in Shannon Index on BASC-2 scores (SDSixWeeks = 0.54, SDOneYear = 0.55, SDTwoYears = 0.46).
Fig. 2: Effect estimates and 95% confidence intervals for the difference in percent relative abundance per point increase on the given BASC-2 scale.
Fig. 3: Associations between select bacterial taxa (shotgun metagenomics) and BASC-2 scores.
Fig. 4: Volcano plots of associations between metabolic functional pathways and BASC-2 scores.

Data availability

The sequencing data used in this study are available through the National Center for Biotechnology Information (NCBI) Sequence Read Archive: https://ncbi.nlm.nih.gov/sra under accession number PRJNA296814. Epidemiologic data are not publicly available due to their sensitive and identifiable nature. Requests to work with the New Hampshire Birth Cohort Study should be directed to Margaret R. Karagas (Margaret.R.Karagas@Dartmouth.edu).

Code availability

Code is available upon request from Hannah E. Laue (Hannah.E.Laue@dartmouth.edu).

References

  1. Romero, M. et al. Psychiatric comorbidities in autism spectrum disorder: a comparative study between DSM-IV-TR and DSM-5 diagnosis. Int. J. Clin. Health Psychol. 16, 266–275 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  2. Sobanski, E. Psychiatric comorbidity in adults with attention-deficit/hyperactivity disorder (ADHD). Eur. Arch. Psychiatry Clin. Neurosci. 256, i26–i31 (2006).

    PubMed  Article  Google Scholar 

  3. Brod, M., Schmitt, E., Goodwin, M., Hodgkins, P. & Niebler, G. ADHD burden of illness in older adults: a life course perspective. Qual. Life Res. 21, 795–799 (2012).

    PubMed  Article  Google Scholar 

  4. Philipp-Wiegmann, F., Retz-Junginger, P., Retz, W. & Rösler, M. The intraindividual impact of ADHD on the transition of adulthood to old age. Eur. Arch. Psychiatry Clin. Neurosci. 266, 367–371 (2016).

    PubMed  Article  Google Scholar 

  5. Matza, L. S., Paramore, C. & Prasad, M. A review of the economic burden of ADHD. Cost. Effectiveness Resour. Allocation 3, 5 (2005).

    Article  Google Scholar 

  6. Robb, J. A. et al. The estimated annual cost of ADHD to the U.S. education system. Sch. Ment. Health 3, 169–177 (2011).

    Article  Google Scholar 

  7. Kogan, M. D. et al. A national profile of the health care experiences and family impact of autism spectrum disorder among children in the United States, 2005–2006. Pediatrics 122, e1149–e1158 (2008).

    PubMed  Article  Google Scholar 

  8. Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell Neurosci. 13, 385 (2019).

  9. Bai, D. et al. Association of genetic and environmental factors with autism in a 5-country cohort. JAMA Psychiatry 76, 1035–1043 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  10. Sciberras, E., Mulraney, M., Silva, D. & Coghill, D. Prenatal risk factors and the etiology of ADHD—review of existing evidence. Curr. Psychiatry Rep. 19, 1 (2017).

    PubMed  Article  Google Scholar 

  11. Modabbernia, A., Velthorst, E. & Reichenberg, A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol. Autism 8, 13 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Rock, K. D. & Patisaul, H. B. Environmental mechanisms of neurodevelopmental toxicity. Curr. Envir. Health Rpt. 5, 145–157 (2018).

    CAS  Article  Google Scholar 

  13. Gilmore, J. H. et al. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J. Neurosci. 27, 1255–1260 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatments on strain-level diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Cryan, J. F. et al. The microbiota−gut−brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    CAS  PubMed  Article  Google Scholar 

  17. Osadchiy, V., Martin, C. R. & Mayer, E. A. The gut–brain axis and the microbiome: mechanisms and clinical implications. Clin. Gastroenterol. Hepatol. 17, 322–332 (2019).

    CAS  PubMed  Article  Google Scholar 

  18. De Angelis, M. et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 8, e76993 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Kang, D.-W. et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8, e68322 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Liu, S. et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 9, 1–9 (2019).

    Google Scholar 

  21. Ma, B. et al. Altered gut microbiota in Chinese children with autism spectrum disorders. Front. Cell. Infect. Microbiol. 9, 40 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Rose, D. R. et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun. 70, 354–368 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Strati, F. et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  24. Zhai, Q. et al. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: a pilot study of Chinese children. Environ. Res. 171, 501–509 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. Aarts, E. et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS ONE 12, e0183509 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Prehn-Kristensen, A. et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS ONE 13, e0200728 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Jiang, H. et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 104, 130–136 (2018).

    PubMed  Article  Google Scholar 

  28. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194 (2015).

    PubMed  Article  Google Scholar 

  29. Naseribafrouei, A. et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26, 1155–1162 (2014).

    CAS  PubMed  Article  Google Scholar 

  30. Laue, H. E., Korrick, S. A., Baker, E. R., Karagas, M. R. & Madan, J. C. Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years. Sci. Rep. 10, 15515 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Sordillo, J. E. et al. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART Randomized Clinical Trial. JAMA Netw. Open 2, e190905 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  32. Reynolds, C. R. & Kamphaus, R. Behavior Assessment System for Children (Pearson, 2004).

  33. Antosca, K. et al. Reliability of stool microbiome methods for DNA yields and sequencing among infants and young children. Microbiologyopen 9, e1018 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Madan, J. C. et al. Association of Cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatr. 170, 212–219 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  35. Morrison, H. G., Grim, S. L., Vineis, J. H. & Sogin, M. L. 16S amplicon fusion primers and protocol for Illumina platform sequencing https://doi.org/10.6084/m9.figshare.833944.v1 (2013).

  36. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  Article  PubMed  Google Scholar 

  38. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    CAS  PubMed  Article  Google Scholar 

  39. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42, D459–D471 (2014).

    CAS  PubMed  Article  Google Scholar 

  41. Shannon, C. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).

  42. Oksanen, J. et al. vegan: community ecology package. https://CRAN.R-project.org/package=vegan (2020).

  43. Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).

    Article  Google Scholar 

  44. Chen, J. GUniFrac: Generalized UniFrac Distances. https://CRAN.R-project.org/package=GUniFrac (2018).

  45. Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    CAS  PubMed  Article  Google Scholar 

  46. Hiergeist, A., Gessner, J. & Gessner, A. Current limitations for the assessment of the role of the gut microbiome for attention deficit hyperactivity disorder (ADHD). Front. Psychiatry 11, 623 (2020).

  47. Vuong, H. E. & Hsiao, E. Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81, 411–423 (2017).

    PubMed  Article  Google Scholar 

  48. Yip, B. H. K. et al. Caesarean section and risk of autism across gestational age: a multi-national cohort study of 5 million births. Int J. Epidemiol. 46, 429–439 (2017).

    PubMed  Google Scholar 

  49. Boucher, O. et al. Association between breastfeeding duration and cognitive development, autistic traits and ADHD symptoms: a multicenter study in Spain. Pediatr. Res. 81, 434–442 (2017).

    PubMed  Article  Google Scholar 

  50. Julvez, J. et al. A cohort study on full breastfeeding and child neuropsychological development: the role of maternal social, psychological, and nutritional factors. Dev. Med. Child Neurol. 56, 148–156 (2014).

    PubMed  Article  Google Scholar 

  51. Tseng, P.-T. et al. Maternal breastfeeding and autism spectrum disorder in children: a systematic review and meta-analysis. Nutr. Neurosci. 22, 354–362 (2019).

    CAS  PubMed  Article  Google Scholar 

  52. Levin, A. M. et al. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci. Rep. 6, 31775 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Azur, M. J., Stuart, E. A., Frangakis, C. & Leaf, P. J. Multiple imputation by chained equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20, 40–49 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  54. van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 45, 1–67 (2011).

    Article  Google Scholar 

  55. Harel, O. et al. Multiple imputation for incomplete data in epidemiologic studies. Am. J. Epidemiol. 187, 576–584 (2018).

    PubMed  Article  Google Scholar 

  56. Mallick, H., Rahnavard, A. & McIver, L. Maaslin2: Maaslin2. BioConductor, R/Bioconductor package, https://doi.org/10.18129/B9.bioc.Maaslin2 (2020).

  57. Mallick, H. et al. Multivariable association in population-scale meta’omic surveys Preprint at bioRxiv https://doi.org/10.1101/2021.01.20.427420 (2021).

  58. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    Google Scholar 

  59. Breedlove, S. & Arnold, A. Hormonal control of a developing neuromuscular system. II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J. Neurosci. 3, 424–432 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Forger, N. G. et al. Deletion of Bax eliminates sex differences in the mouse forebrain. Proc. Natl Acad. Sci. USA 101, 13666–13671 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Hanamsagar, R. & Bilbo, S. D. Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development. J. Steroid Biochem. Mol. Biol. 160, 127–133 (2016).

    CAS  PubMed  Article  Google Scholar 

  62. R Core Team. R: A language and environment for statistical computing. https://www.R-project.org (2020).

  63. RStudio Team. RStudio: integrated development for R. http://www.rstudio.com (2020).

  64. Barandouzi, Z. A., Starkweather, A. R., Henderson, W. A., Gyamfi, A. & Cong, X. S. Altered composition of gut microbiota in depression: a systematic review. Front. Psychiatry 11, 541 (2020).

  65. Liu, Y. et al. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin. Gastroenterol. Hepatol. 14, 1602–1611.e5 (2016).

    PubMed  Article  Google Scholar 

  66. Madan, A. et al. The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. J. Affect. Disord. 264, 98–106 (2020).

    CAS  PubMed  Article  Google Scholar 

  67. Morales Marroquin, E. et al. Association between the distal gut microbiome and anxiety in highly active individuals. Research Square https://doi.org/10.21203/rs.3.rs-26541/v1 (2020).

  68. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786–796 (2016).

    CAS  PubMed  Article  Google Scholar 

  69. Checa-Ros, A., Jeréz-Calero, A., Molina-Carballo, A., Campoy, C. & Muñoz-Hoyos, A. Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications. Nutrients 13, 249 (2021).

  70. Cheung, S. G. et al. Systematic review of gut microbiota and major depression. Front. Psychiatry 10, 34 (2019).

  71. Golubeva, A. V. et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24 166–178 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  72. Inoue, R. et al. A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci. Biotechnol. Biochem. 80, 2450–2458 (2016).

    CAS  PubMed  Article  Google Scholar 

  73. Liu, F. et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry 9, 43 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  74. Oades, R. D., Dauvermann, M. R., Schimmelmann, B. G., Schwarz, M. J. & Myint, A.-M. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism—effects of medication. Behav. Brain Funct. 6, 29 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. (International Agency for Research on Cancer, 1999).

  76. Antypa, N., Drago, A. & Serretti, A. The role of COMT gene variants in depression: bridging neuropsychological, behavioral and clinical phenotypes. Neurosci. Biobehav. Rev. 37, 1597–1610 (2013).

    CAS  PubMed  Article  Google Scholar 

  77. Lee, L. O. & Prescott, C. A. Association of the catechol-O-methyltransferase (COMT) Val158Met polymorphism and anxiety-related traits: a meta-analysis. Psychiatr. Genet. 24, 52–69 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Martínez-Levy, G. A. et al. Association of the catechol-O-methyltransferase gene and attention deficit hyperactivity disorder: results from an epidemiological study of adolescents of Mexico City. Psychiatr. Genet. 23, 90–91 (2013).

    PubMed  Article  Google Scholar 

  79. Stein, M. B., Fallin, M. D., Schork, N. J. & Gelernter, J. COMT polymorphisms and anxiety-related personality traits. Neuropsychopharmacology 30, 2092–2102 (2005).

    CAS  PubMed  Article  Google Scholar 

  80. Turroni, F. et al. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front. Microbiol. 5, 437 (2014).

  81. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D. & Rubin, R. A. Gastrointestinal flora and gastrointestinal status in children with autism—comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11, 22 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  82. Abdel-Haq, R., Schlachetzki, J. C. M., Glass, C. K. & Mazmanian, S. K. Microbiome–microglia connections via the gut–brain axis. J. Exp. Med. 216, 41–59 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Mikkelsen, K., Stojanovska, L. & Apostolopoulos, V. The effects of vitamin B in depression. Curr. Med. Chem. 23, 4317–4337 (2016).

    CAS  PubMed  Article  Google Scholar 

  84. Herbison, C. E. et al. Low intake of B-vitamins is associated with poor adolescent mental health and behaviour. Prev. Med. 55, 634–638 (2012).

    PubMed  Article  Google Scholar 

  85. Hicks, S. D. et al. Oral microbiome activity in children with autism spectrum disorder. Autism Res. 11, 1286–1299 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  86. Wang, C., Geng, H., Liu, W. & Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism. Medicine 96, e6696 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Chen, Y. et al. Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response. J. Affect. Disord. 259, 56–66 (2019).

    CAS  PubMed  Article  Google Scholar 

  88. Evans, S. J. et al. The gut microbiome composition associates with bipolar disorder and illness severity. J. Psychiatr. Res. 87, 23–29 (2017).

    PubMed  Article  Google Scholar 

  89. Humbel, F. et al. Association of alterations in intestinal microbiota with impaired psychological function in patients with inflammatory bowel diseases in remission. Clin. Gastroenterol. Hepatol. 18, 2019–2029.e11 (2020).

    CAS  PubMed  Article  Google Scholar 

  90. Dawson, G. et al. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 125, e17–e23 (2010).

    PubMed  Article  Google Scholar 

  91. DuPaul, G. J., Kern, L., Gormley, M. J. & Volpe, R. J. Early intervention for young children with ADHD: academic outcomes for responders to behavioral treatment. Sch. Ment. Health 3, 117–126 (2011).

    Article  Google Scholar 

  92. Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).

    PubMed  Article  Google Scholar 

  93. Luby, J. L., Belden, A., Harms, M. P., Tillman, R. & Barch, D. M. Preschool is a sensitive period for the influence of maternal support on the trajectory of hippocampal development. Proc. Natl Acad. Sci. USA 113, 5742–5747 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Mazurek, M. O., Curran, A., Burnette, C. & Sohl, K. ECHO autism STAT: accelerating early access to autism diagnosis. J. Autism Dev. Disord. 49, 127–137 (2019).

    PubMed  Article  Google Scholar 

  95. Warner, B. B. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr. Res. 85, 216–224 (2019).

    PubMed  Article  Google Scholar 

  96. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Tremblay, J. et al. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6, 771 (2015).

  98. Ye, S. H., Siddle, K. J., Park, D. J. & Sabeti, P. C. Benchmarking metagenomics tools for taxonomic classification. Cell 178, 779–794 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. McIntyre, A. B. R. et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 18, 182 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. Mohammadkhah, A. I., Simpson, E. B., Patterson, S. G. & Ferguson, J. F. Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children (Basel) 5, 160 (2018).

  101. Coker, M. O. et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG 127, 217–227 (2020).

  102. Bitsko, R. H. et al. Epidemiology and impact of health care provider–diagnosed anxiety and depression among US children. J. Dev. Behav. Pediatr. 39, 395–403 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  103. Ghandour, R. M. et al. Prevalence and treatment of depression, anxiety, and conduct problems in US children. J. Pediatrics 206, 256–267.e3 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health Office of the Director (UH3OD023275), National Institute of Environmental Health (P01ES022832, P20ES018175, P42ES007373), the National Institute of General Medical Sciences (P20GM104416), and the U.S. Environmental Protection Agency (RD-83544201).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.E.L., M.R.K., S.A.K., and J.C.M.; Methodology, H.E.L., M.R.K., M.O.C., D.C.B., S.A.K., and J.C.M.; Formal analysis, H.E.L.; Investigation, E.R.B.; Writing—original draft, H.E.L.; Writing—review and editing, H.E.L., M.R.K., M.O.C., D.C.B., E.R.B., S.A.K., and J.C.M.; Funding acquisition, M.R.K, S.A.K., J.C.M. All authors approved of the final manuscript to be published.

Corresponding author

Correspondence to Hannah E. Laue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

Parents of participants provided written informed consent. All study protocols were approved by the Center for the Protection of Human Subjects at Dartmouth, and all methods were carried out in accordance with relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laue, H.E., Karagas, M.R., Coker, M.O. et al. Sex-specific relationships of the infant microbiome and early-childhood behavioral outcomes. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01785-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-021-01785-z

Search

Quick links