Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Early-life gut microbiota and attention deficit hyperactivity disorder in preadolescents

Abstract

Background

Gut microbiota maturation coincides with nervous system development. Cross-sectional data suggest gut microbiota of individuals with and without attention deficit hyperactivity disorder (ADHD) differs. We hypothesized that infant gut microbiota composition is associated with later ADHD development in our on-going birth cohort study, WHEALS.

Methods

Gut microbiota was profiled using 16S ribosomal RNA and the internal transcribed spacer region 2 (ITS2) sequencing in stool samples from 1 month and 6 months of age. ADHD was defined by parent-reported or medical record doctor diagnosis at age 10.

Results

A total of 314 children had gut microbiota and ADHD data; 59 (18.8%) had ADHD. After covariate adjustment, bacterial phylogenetic diversity (p = 0.017) and bacterial composition (unweighted UniFrac p = 0.006, R2 = 0.9%) at age 6 months were associated with development of ADHD. At 1 month of age, 18 bacterial and 3 fungal OTUs were associated with ADHD development. At 6 months of age, 51 bacterial OTUs were associated with ADHD; 14 of the order Lactobacillales. Three fungal OTUs at 6 months of age were associated with ADHD development.

Conclusions

Infant gut microbiota is associated with ADHD development in pre-adolescents. Further studies replicating these findings and evaluating potential mechanisms of the association are needed.

Impact

  • Cross-sectional studies suggest that the gut microbiota of individuals with and without ADHD differs.

  • We found evidence that the bacterial gut microbiota of infants at 1 month and 6 months of age is associated with ADHD at age 10 years.

  • We also found novel evidence that the fungal gut microbiota in infancy (ages 1 month and 6 months) is associated with ADHD at age 10 years.

  • This study addresses a gap in the literature in providing longitudinal evidence for an association of the infant gut microbiota with later ADHD development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut bacterial microbiota alpha diversity metrics at 1 and 6 months of age in children who later developed attention deficit hyperactivity disorder (ADHD) or were neurotypical (NT).
Fig. 2: Gut fungal microbiota alpha diversity metrics at 1 and 6 months of age in children who later developed attention deficit hyperactivity disorder (ADHD) or were neurotypical (NT).

Similar content being viewed by others

References

  1. Tarver, J., Daley, D. & Sayal, K. Attention-deficit hyperactivity disorder (ADHD): an updated review of the essential facts. Child Care Health Dev. 40, 762–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Borre, Y. E. et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20, 509–518 (2014).

    Article  PubMed  Google Scholar 

  3. Principi, N. & Esposito, S. Gut microbiota and central nervous system development. J. Infect. 73, 536–546 (2016).

    Article  PubMed  Google Scholar 

  4. McDonald, D. et al. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Micro. Ecol. Health Dis. 26, 26555 (2015).

    Google Scholar 

  5. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ly, V. et al. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur. Child Adolesc. Psychiatry 26, 1067–1079 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Evans, J. M., Morris, L. S. & Marchesi, J. R. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J. Endocrinol. 218, R37–R47 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Aarts, E. et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One 12, e0183509 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang, H. Y. et al. Gut microbiota profiles in treatment-naive children with attention deficit hyperactivity disorder. Behav. Brain Res. 347, 408–413 (2018).

    Article  PubMed  Google Scholar 

  10. Wang, L. J. et al. Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder. Eur. Child Adolesc. Psychiatry 29, 287–297 (2020).

    Article  PubMed  Google Scholar 

  11. Wan, L. et al. Case-control study of the effects of gut microbiota composition on neurotransmitter metabolic pathways in children with attention deficit hyperactivity disorder. Front Neurosci. 14, 127 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Partty, A., Kalliomaki, M., Wacklin, P., Salminen, S. & Isolauri, E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr. Res. 77, 823–828 (2015).

    Article  PubMed  Google Scholar 

  13. Havstad, S. et al. Effect of prenatal indoor pet exposure on the trajectory of total IgE levels in early childhood. J. Allergy Clin. Immunol. 128, 880–885 e884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wegienka, G. et al. Racial disparities in allergic outcomes in African Americans emerge as early as age 2 years. Clin. Exp. Allergy 42, 909–917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cassidy-Bushrow, A. E. et al. Prenatal pet keeping and caregiver-reported attention deficit hyperactivity disorder through preadolescence in a United States birth cohort. BMC Pediatr. 19, 390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Levin, A. M. et al. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci. Rep. 6, 31775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sitarik, A. R. et al. Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota. Environ. Int. 144, 106062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 3 (2011).

    Article  Google Scholar 

  26. Koljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wegienka, G. et al. Combined effects of prenatal medication use and delivery type are associated with eczema at age 2 years. Clin. Exp. Allergy 45, 660–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oksanen, J. et al. 2019 Vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.

  29. Oksanen, J. et al. 2012 Community Ecology Package. R Version 2.0-5. http://cran.r-project.org, http://vegan.r-forge.r-project.org/.

  30. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    Article  PubMed  Google Scholar 

  32. Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).

    Article  Google Scholar 

  33. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S Plus 4th edn (Springer, New York, 2002).

  34. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    Google Scholar 

  35. Selvin, S. Statistical Analysis of Epidemiologic Data 2nd edn (Oxford University Press, New York, 1996).

  36. George, F. et al. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: a multifaceted functional health perspective. Front Microbiol. 9, 2899 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect. Microbiol. 2, 86 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Takahashi, K. et al. Effect of Enterococcus faecalis 2001 on colitis and depressive-like behavior in dextran sulfate sodium-treated mice: involvement of the brain-gut axis. J. Neuroinflammation 16, 201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dunn, G. A., Nigg, J. T. & Sullivan, E. L. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharm. Biochem Behav. 182, 22–34 (2019).

    Article  CAS  Google Scholar 

  40. Yogeswara, I. B. A., Maneerat, S. & Haltrich, D. Glutamate decarboxylase from lactic acid bacteria—a key enzyme in GABA synthesis. Microorganisms 8, 1923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mamiya, P. C., Arnett, A. B. & Stein, M. A. Precision medicine care in ADHD: the case for neural excitation and inhibition. Brain Sci. 11, 91 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tanaka, M. & Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66, 515–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cowan, C. S. M., Dinan, T. G. & Cryan, J. F. Annual Research Review: Critical windows – the microbiota-gut-brain axis in neurocognitive development. J. Child Psychol. Psychiatry 61, 353–371 (2020).

    Article  PubMed  Google Scholar 

  45. Sordillo, J. E. et al. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Netw. Open 2, e190905 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ros, R. & Graziano, P. A. Social functioning in children with or at risk for attention deficit/hyperactivity disorder: a meta-analytic review. J. Clin. Child Adolesc. Psychol. 47, 213–235 (2018).

    Article  PubMed  Google Scholar 

  47. Kaiser, M. L., Schoemaker, M. M., Albaret, J. M. & Geuze, R. H. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature. Res Dev. Disabil. 36c, 338–357 (2015).

    Article  PubMed  Google Scholar 

  48. Gao, W. et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacol. (Berl.) 236, 1641–1651 (2019).

    Article  CAS  Google Scholar 

  49. Castellanos, F. X. & Aoki, Y. Intrinsic functional connectivity in attention-deficit/hyperactivity disorder: a science in development. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 253–261 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H. & Kana, R. K. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 7, e1218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).

    Article  PubMed  Google Scholar 

  52. Korrel, H., Mueller, K. L., Silk, T., Anderson, V. & Sciberras, E. Research Review: Language problems in children with attention-deficit hyperactivity disorder – a systematic meta-analytic review. J. Child Psychol. Psychiatry 58, 640–654 (2017).

    Article  PubMed  Google Scholar 

  53. Rucklidge, J. J. Could yeast infections impair recovery from mental illness? A case study using micronutrients and olive leaf extract for the treatment of ADHD and depression. Adv. Mind Body Med. 27, 14–18 (2013).

    PubMed  Google Scholar 

  54. Forbes, J. D., Bernstein, C. N., Tremlett, H., Van Domselaar, G. & Knox, N. C. A fungal world: could the gut mycobiome be involved in neurological disease? Front Microbiol. 9, 3249 (2018).

    Article  PubMed  Google Scholar 

  55. Iovene, M. R. et al. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia 182, 349–363 (2017).

    Article  PubMed  Google Scholar 

  56. Strati, F. et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hof, H. Rhodotorula spp. in the gut – foe or friend? GMS Infect. Dis. 7, Doc02 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Rianda, D., Agustina, R., Setiawan, E. A. & Manikam, N. R. M. Effect of probiotic supplementation on cognitive function in children and adolescents: a systematic review of randomised trials. Benef. Microbes 10, 873–882 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Checa-Ros, A., Jeréz-Calero, A., Molina-Carballo, A., Campoy, C. & Muñoz-Hoyos, A. Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications. Nutrients 13, 249 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rojo, D. et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev. 41, 453–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schisterman, E. F., Cole, S. R. & Platt, R. W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488–495 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Biederman, J. & Faraone, S. V. Attention-deficit hyperactivity disorder. Lancet 366, 237–248 (2005).

    Article  PubMed  Google Scholar 

  63. Hamad, A. F., Alessi-Severini, S., Mahmud, S. M., Brownell, M. & Kuo, I. F. Antibiotic exposure in the first year of life and the risk of attention-deficit/hyperactivity disorder: a population-based cohort study. Am. J. Epidemiol. 188, 1923–1931 (2019).

    Article  PubMed  Google Scholar 

  64. Axelsson, P. B. et al. Investigating the effects of cesarean delivery and antibiotic use in early childhood on risk of later attention deficit hyperactivity disorder. J. Child Psychol. Psychiatry 60, 151–159 (2019).

    Article  PubMed  Google Scholar 

  65. Jena, A. et al. Gut-brain axis in the early postnatal years of life: a developmental perspective. Front Integr. Neurosci. 14, 44 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chou, W. J. et al. Dietary and nutrient status of children with attention-deficit/ hyperactivity disorder: a case-control study. Asia Pac. J. Clin. Nutr. 27, 1325–1331 (2018).

    PubMed  Google Scholar 

  67. Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Institutes of Health (R01 AI050681, R01 HL113010, R01 HD082147, and P01 AI089473) and the Fund for Henry Ford Hospital. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data, in drafting and/or revising critically the article for important intellectual content; and in the final approval of the version to be published.

Corresponding author

Correspondence to Andrea E. Cassidy-Bushrow.

Ethics declarations

Competing interests

S.V.L. is a board member and consultant for Siolta Therapeutics Inc. All other authors declare no conflict of interest.

Ethics approval and consent to participate

Parental written informed consent and pre-adolescent written informed assent were obtained for the conduct of the study. Specific patient consent was not required for the current manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassidy-Bushrow, A.E., Sitarik, A.R., Johnson, C.C. et al. Early-life gut microbiota and attention deficit hyperactivity disorder in preadolescents. Pediatr Res 93, 2051–2060 (2023). https://doi.org/10.1038/s41390-022-02051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02051-6

This article is cited by

Search

Quick links