Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation



The Neonatal Resuscitation Program (NRP) recommends using 100% O2 during chest compressions and adjusting FiO2 based on SpO2 after return of spontaneous circulation (ROSC). The optimal strategy for adjusting FiO2 is not known.


Twenty-five near-term lambs asphyxiated by umbilical cord occlusion to cardiac arrest were resuscitated per NRP. Following ROSC, lambs were randomized to gradual decrease versus abrupt wean to 21% O2 followed by FiO2 titration to achieve NRP SpO2 targets. Carotid blood flow and blood gases were monitored.


Three minutes after ROSC, PaO2 was 229 ± 32 mmHg in gradual wean group compared to 57 ± 13 following abrupt wean to 21% O2 (p < 0.001). PaO2 remained high in the gradual wean group at 10 min after ROSC (110 ± 10 vs. 67 ± 12, p < 0.01) despite similar FiO2 (~0.3) in both groups. Cerebral O2 delivery (C-DO2) was higher above physiological range following ROSC with gradual wean (p < 0.05). Lower blood oxidized/reduced glutathione ratio (suggesting less oxidative stress) was observed with abrupt wean.


Weaning FiO2 abruptly to 0.21 with adjustment based on SpO2 prevents surge in PaO2 and C-DO2 and minimizes oxidative stress compared to gradual weaning from 100% O2 following ROSC. Clinical trials with neurodevelopmental outcomes comparing post-ROSC FiO2 weaning strategies are warranted.


  • In a lamb model of perinatal asphyxial cardiac arrest, abrupt weaning of inspired oxygen to 21% prevents excessive oxygen delivery to the brain and oxidative stress compared to gradual weaning from 100% oxygen following return of spontaneous circulation.

  • Clinical studies assessing neurodevelopmental outcomes comparing abrupt and gradual weaning of inspired oxygen after recovery from neonatal asphyxial arrest are warranted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Inspired O2 concentration and weaning strategy in gradual wean and abrupt wean groups after ROSC.
Fig. 2: The left carotid arterial blood flow during fetal baseline, asphyxia, resuscitation, and ROSC.
Fig. 3: Comparison of PaO2 and SaO2.
Fig. 4: Comparison of PvO2 and SvO2.
Fig. 5: Comparison of PaCO2.
Fig. 6: Comparison of C-DO2.


  1. 1.

    Halling, C., Sparks, J. E., Christie, L. & Wyckoff, M. H. Efficacy of intravenous and endotracheal epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. J. Pediatr 185, 232-236 (2017).

  2. 2.

    Wyckoff, M. H. et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 142(Suppl 1), S185–s221 (2020).

    PubMed  Google Scholar 

  3. 3.

    Gunn, A. J. et al. Hypothermia: an evolving treatment for neonatal hypoxic ischemic encephalopathy. Pediatrics 121, 648–649 (2008); author reply 9–50.

  4. 4.

    Black, R. E. et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 375, 1969–1987 (2010).

    Article  Google Scholar 

  5. 5.

    Vento, M., Escobar, J., Cernada, M., Escrig, R. & Aguar, M. The use and misuse of oxygen during the neonatal period. Clin. Perinatol. 39, 165–176 (2012).

    Article  Google Scholar 

  6. 6.

    Miller, S. L., Wallace, E. M. & Walker, D. W. Antioxidant therapies: a potential role in perinatal medicine. Neuroendocrinology 96, 13–23 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Perez-de-Sa, V. et al. High brain tissue oxygen tension during ventilation with 100% oxygen after fetal asphyxia in newborn sheep. Pediatr. Res. 65, 57–61 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Kumar, V. H. et al. Exposure to supplemental oxygen and its effects on oxidative stress and antioxidant enzyme activity in term newborn lambs. Pediatr. Res. 67, 66–71 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Kapadia, V. S. et al. Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy. J. Pediatr. 163, 949–954 (2013).

    Article  Google Scholar 

  10. 10.

    Shankaran, S. et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Azzopardi, D. V. et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 361, 1349–1358 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Foglia, E. E. et al. Duration of resuscitation at birth, mortality, and neurodevelopment: a systematic review. Pediatrics 146, e20201449 (2020).

  13. 13.

    Badurdeen, S. et al. Excess cerebral oxygen delivery follows return of spontaneous circulation in near-term asphyxiated lambs. Sci. Rep. 10, 16443 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    American Academy of Pediatrics, Weiner, G. M., American Heart Association & Zaichkin J. Textbook of Neonatal Resuscitation. 7th edn (American Academy of Pediatrics, 2016).

  15. 15.

    Wyckoff, M. H. et al. Part 13: Neonatal Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 132(Suppl 2), S543–S560 (2015).

    Article  Google Scholar 

  16. 16.

    Aziz, K. et al. Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 142(Suppl 2), S524–S550 (2020).

    PubMed  Google Scholar 

  17. 17.

    Rawat, M. et al. Oxygenation and hemodynamics during chest compressions in a lamb model of perinatal asphyxia induced cardiac arrest. Children (Basel) 6, 52 (2019).

  18. 18.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  19. 19.

    Vali, P. et al. Evaluation of timing and route of epinephrine in a neonatal model of asphyxial arrest. J. Am. Heart Assoc. 6, e004402 (2017).

  20. 20.

    Isayama, T. et al. The route, dose, and interval of epinephrine for neonatal resuscitation: a systematic review. Pediatrics 146, e20200586 (2020).

  21. 21.

    Rawat, M. et al. Optimal oxygen targets in term lambs with meconium aspiration syndrome and pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 63, 510–518 (2020).

    CAS  Article  Google Scholar 

  22. 22.

    Lakshminrusimha, S. & Steinhorn, R. H. Pulmonary vascular biology during neonatal transition. Clin. Perinatol. 26, 601–619 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    Patel, A. et al. Exposure to supplemental oxygen downregulates antioxidant enzymes and increases pulmonary arterial contractility in premature lambs. Neonatology 96, 182–192 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Soothill, P. W., Nicolaides, K. H., Rodeck, C. H. & Campbell, S. Effect of gestational age on fetal and intervillous blood gas and acid-base values in human pregnancy. Fetal Ther. 1, 168–175 (1986).

    CAS  Article  Google Scholar 

  25. 25.

    Koch, G. & Wendel, H. Adjustment of arterial blood gases and acid base balance in the normal newborn infant during the first week of life. Biol. Neonat. 12, 136–161 (1968).

    CAS  Article  Google Scholar 

  26. 26.

    Saugstad, O. D., Oei, J.-L., Lakshminrusimha, S. & Vento, M. Oxygen therapy of the newborn from molecular understanding to clinical practice. Pediatr. Res. 85, 20–29 (2019).

    Article  Google Scholar 

  27. 27.

    Østerholt, H. C. et al. Antioxidant protects against increases in low molecular weight hyaluronan and inflammation in asphyxiated newborn pigs resuscitated with 100% oxygen. PLoS ONE 7, e38839 (2012).

    Article  Google Scholar 

  28. 28.

    Solberg, R., Andresen, J. H., Escrig, R., Vento, M. & Saugstad, O. D. Resuscitation of hypoxic newborn piglets with oxygen induces a dose-dependent increase in markers of oxidation. Pediatr. Res. 62, 559–563 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    Shalak, L. & Perlman, J. M. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum. Dev. 80, 125–141 (2004).

    Article  Google Scholar 

  30. 30.

    Koch, J. D., Miles, D. K., Gilley, J. A., Yang, C.-P. & Kernie, S. G. Brief exposure to hyperoxia depletes the glial progenitor pool and impairs functional recovery after hypoxic-ischemic brain injury. J. Cereb. Blood Flow Metab. 28, 1294–1306 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    Lakshminrusimha, S. et al. Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen. J. Appl Physiol. (1985) 111, 1441–1447 (2011).

    Article  Google Scholar 

  32. 32.

    Ferguson, L. P., Durward, A. & Tibby, S. M. Relationship between arterial partial oxygen pressure after resuscitation from cardiac arrest and mortality in children. Circulation 126, 335–342 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Maconochie, I. K. et al. Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 142(Suppl 1), S140–S84 (2020).

    PubMed  Google Scholar 

  34. 34.

    Saugstad, O. D., Ramji, S., Soll, R. F. & Vento, M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology 94, 176–182 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Saugstad, O. D., Rootwelt, T. & Aalen, O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics 102, e1 (1998).

    CAS  Article  Google Scholar 

  36. 36.

    Ramji, S. et al. Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr. Res. 34, 809–812 (1993).

    CAS  Article  Google Scholar 

  37. 37.

    Linner, R., Werner, O., Perez-de-Sa, V. & Cunha-Goncalves, D. Circulatory recovery is as fast with air ventilation as with 100% oxygen after asphyxia-induced cardiac arrest in piglets. Pediatr. Res. 66, 391–394 (2009).

    Article  Google Scholar 

  38. 38.

    Solevag, A. L., Dannevig, I., Nakstad, B. & Saugstad, O. D. Resuscitation of severely asphyctic newborn pigs with cardiac arrest by using 21% or 100% oxygen. Neonatology 98, 64–72 (2010).

    Article  Google Scholar 

  39. 39.

    Solevåg, A. L. et al. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets. Resuscitation 106, 7–13 (2016).

    Article  Google Scholar 

  40. 40.

    Rosenberg, A. A. Cerebral blood flow and O2 metabolism after asphyxia in neonatal lambs. Pediatr. Res. 20, 778–782 (1986).

    CAS  Article  Google Scholar 

  41. 41.

    Chandrasekharan, P. K. et al. Continuous end-tidal carbon dioxide monitoring during resuscitation of asphyxiated term lambs. Neonatology 109, 265–273 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Perez, M., Robbins, M. E., Revhaug, C. & Saugstad O. D. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 142, 61–72 (2019).

  43. 43.

    Thornton, C., Baburamani, A. A., Kichev, A. & Hagberg, H. Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochem. Soc. Trans. 45, 1067–1076 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Giustarini, D., Milzani, A., Dalle-Donne, I. & Rossi, R. Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells Mol. Dis. 40, 174–179 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    Vali, P. et al. The perinatal asphyxiated lamb model: a model for newborn resuscitation. J. Vis. Exp. 57553 (2018).

Download references


The work has been supported by NIH grants HD096299 (to P.V.), HD072929 (to S.L.), American Academy of Pediatrics- Neonatal Resuscitation Program Research Grant (to S.L.), UC Davis Child Health Research Grant and First Tech Federal Credit Union (to D.S.), Children’s Miracle Network at UC Davis Children’s Hospital Research Grant (to D.S.), and NRP Research Grant from Canadian Pediatric Society. Presented in an abstract form at the American Academy of Pediatrics, National Conference and Exhibition (AAP-NCE) 2020 and received the Young Investigator Award (D.S.).

Author information




D.S. and S.L. made substantial contributions to conception and design, acquisition, extraction, analysis and interpretation of data and drafting the manuscript. P.V., P.C., A.L.L., M.E.H., Z.A., M.H.W., and S.W. made substantial contributions to data acquisition and extraction. All authors critically revised and approved the final version for publication.

Corresponding author

Correspondence to Deepika Sankaran.

Ethics declarations

Competing interests

The authors declare no competing interest.


Patient consent was not required

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sankaran, D., Vali, P., Chen, P. et al. Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation. Pediatr Res 90, 540–548 (2021).

Download citation


Quick links