Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF

Abstract

Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exosomes promoted PNI in pancreatic cancer.
Fig. 2: Deficiency of exosomes blocked PNI of pancreatic cancer in vivo.
Fig. 3: Exosomal transport of lncXIST from pancreatic cancer cells to nerve cells induced PNI.
Fig. 4: Exosomal lncXIST increased neural cell secretion of GDNF, followed by activation of RET in pancreatic cancer cells.
Fig. 5: XIST/GDNF axis was closely related to mice’s PNI in pancreatic cancer.
Fig. 6: miR-211-5p directly binds to XIST and GDNF 3′-UTR.

Similar content being viewed by others

Data availability

The data underlying Fig. 3A–C are available in the GEO, ICGC and TCGA databases. All other data are available in the main text.

References

  1. Schorn S, Demir IE, Haller B, Scheufele F, Reyes CM, Tieftrunk E, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma - a systematic review and meta-analysis. Surg Oncol. 2017;26:105–15.

    Article  PubMed  Google Scholar 

  2. Li J, Kang R, Tang D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021;41:642–60.

    Article  Google Scholar 

  3. Liebl F, Demir IE, Mayer K, Schuster T, D’Haese JG, Becker K, et al. The impact of neural invasion severity in gastrointestinal malignancies: a clinicopathological study. Ann Surg. 2014;260:900–7.

    Article  PubMed  Google Scholar 

  4. Demir IE, Ceyhan GO, Liebl F, D’Haese JG, Maak M, Friess H. Neural invasion in pancreatic cancer: the past, present and future. Cancers. 2010;2:1513–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stopczynski RE, Normolle DP, Hartman DJ, Ying H, DeBerry JJ, Bielefeldt K, et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res. 2014;74:1718–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015;12:649–59.

    Article  CAS  PubMed  Google Scholar 

  7. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9:703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Meng Q, Qian J, Li M, Gu C, Yang Y. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther. 2022;234:108123.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang C, Yang Y, Yang Y, Guo L, Huang J, Liu X, et al. Long noncoding RNA (lncRNA) HOTAIR affects tumorigenesis and metastasis of non-small cell lung cancer by upregulating miR-613. Oncol Res. 2018;26:725–34.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gu L, Lu LS, Zhou DL, Liu ZC. UCA1 promotes cell proliferation and invasion of gastric cancer by targeting CREB1 sponging to miR-590-3p. Cancer Med. 2018;7:1253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kou N, Liu S, Li X, Li W, Zhong W, Gui L, et al. H19 facilitates tongue squamous cell carcinoma migration and invasion via sponging miR-let-7. Oncol Res. 2019;27:173–82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang J, Qi M, Fei X, Wang X, Wang K. Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med. 2021;27:159.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun J, Zhang Y. LncRNA XIST enhanced TGF-β2 expression by targeting miR-141-3p to promote pancreatic cancer cells invasion. Biosci Rep. 2019;39:BSR20190332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma Y, Zhu Y, Shang L, Qiu Y, Shen N, Wang J, et al. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling. Oncogene. 2023;42:1419–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wahlgren J, De L, Karlson T, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40:e130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer. Cell. 2023;186:1610–26.

    Article  CAS  PubMed  Google Scholar 

  17. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Behera J, Kumar A, Voor MJ, Tyagi N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 2021;11:7715–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu G, Xia Y, Zhao Z, Li A, Li H, Xiao T. LncRNA XIST from the bone marrow mesenchymal stem cell derived exosome promotes osteosarcoma growth and metastasis through miR-655/ACLY signal. Cancer Cell Int. 2022;22:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang SH, Zhang S, Wang H, Xue JL, Zhang ZG. Emerging experimental models for assessing perineural invasion in human cancers. Cancer Lett. 2022;535:215610.

    Article  CAS  PubMed  Google Scholar 

  21. Takikawa T, Masamune A, Yoshida N, Hamada S, Kogure T, Shimosegawa T. Exosomes derived from pancreatic stellate cells: microRNA signature and effects on pancreatic cancer cells. Pancreas. 2017;46:19–27.

    Article  CAS  PubMed  Google Scholar 

  22. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014;74:139–50.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013;131:1194–203. 1203.e1-14.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018;28:862–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, et al. Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat Immunol. 2013;14:793–803.

    Article  CAS  PubMed  Google Scholar 

  27. Bakst RL, Xiong H, Chen CH, Deborde S, Lyubchik A, Zhou Y, et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Cancer Res. 2017;77:6400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang JF, Tao LY, Yang MW, Xu DP, Jiang SH, Fu XL, et al. CD74 promotes perineural invasion of cancer cells and mediates neuroplasticity via the AKT/EGR-1/GDNF axis in pancreatic ductal adenocarcinoma. Cancer Lett. 2021;508:47–58.

    Article  CAS  PubMed  Google Scholar 

  29. Wei W, Liu Y, Lu Y, Yang B, Tang L. LncRNA XIST promotes pancreatic cancer proliferation through miR-133a/EGFR. J Cell Biochem. 2017;118:3349–58.

    Article  CAS  PubMed  Google Scholar 

  30. Sen R, Ghosal S, Das S, Balti S, Chakrabarti J. Competing endogenous RNA: the key to posttranscriptional regulation. ScientificWorldJournal. 2014;2014:896206.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li L, Lv G, Wang B, Kuang L. The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun. 2018;503:2555–62.

    Article  CAS  PubMed  Google Scholar 

  32. Xia ZQ, Ding DK, Zhang N, Wang JX, Yang HY, Zhang D. MicroRNA-211 causes ganglion cell dysplasia in congenital intestinal atresia via down-regulation of glial-derived neurotrophic factor. Neurogastroenterol Motility. 2016;28:186–95.

    Article  CAS  Google Scholar 

  33. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  34. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11:695–707.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019;1871:455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruivo CF, Bastos N, Adem B, Batista I, Duraes C, Melo CA, et al. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut. 2022;71:2043–68.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Li H, Lu X, Wen C, Huo Z, Shi M, et al. Melittin-induced long non-coding RNA NONHSAT105177 inhibits proliferation and migration of pancreatic ductal adenocarcinoma. Cell Death Dis. 2018;9:940.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, et al. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer. 2024;23:18.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang M, Zhou L, Yu F, Zhang Y, Li P, Wang K. The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci. 2019;76:2059–76.

    Article  CAS  PubMed  Google Scholar 

  41. Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer. 2018;17:82.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gong M, Wang X, Mu L, Wang Y, Pan J, Yuan X, et al. Steroid receptor coactivator-1 enhances the stemness of glioblastoma by activating long noncoding RNA XIST/miR-152/KLF4 pathway. Cancer Sci. 2021;112:604–18.

    Article  CAS  PubMed  Google Scholar 

  43. Deng J, Wang S, Meng S, Qi Z, Gu X, Huang C, et al. Association of a newly identified lncRNA LNC_000280 with the formation of acetylcholine receptor clusters in vitro. Biochem Biophys Res Commun. 2022;610:8–14.

    Article  CAS  PubMed  Google Scholar 

  44. Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, et al. Cancer neuroscience: state of the field, emerging directions. Cell. 2023;186:1689–707.

    Article  CAS  PubMed  Google Scholar 

  45. He S, Chen CH, Chernichenko N, He S, Bakst RL, Barajas F, et al. GFRalpha1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc Natl Acad Sci USA. 2014;111:E2008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anand U, Otto WR, Casula MA, Day NC, Davis JB, Bountra C, et al. The effect of neurotrophic factors on morphology, TRPV1 expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci Lett. 2006;399:51–6.

    Article  CAS  PubMed  Google Scholar 

  47. Ben QW, Wang JC, Liu J, Zhu Y, Yuan F, Yao WY, et al. Positive expression of L1-CAM is associated with perineural invasion and poor outcome in pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2010;17:2213–21.

    Article  PubMed  Google Scholar 

  48. Lin C, Cao W, Ren Z, Tang Y, Zhang C, Yang R, et al. GDNF secreted by nerves enhances PD-L1 expression via JAK2-STAT1 signaling activation in HNSCC. Oncoimmunology. 2017;6:e1353860.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chernichenko N, Omelchenko T, Deborde S, Bakst RL, He S, Chen CH, et al. Cdc42 mediates cancer cell chemotaxis in perineural invasion. Mol Cancer Res. 2020;18:913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gil Z, Cavel O, Kelly K, Brader P, Rein A, Gao SP, et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 2010;102:107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cavel O, Shomron O, Shabtay A, Vital J, Trejo-Leider L, Weizman N, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 2012;72:5733–43.

    Article  CAS  PubMed  Google Scholar 

  52. Trupp M, Scott R, Whittemore SR, Ibanez CF. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem. 1999;274:20885–94.

    Article  CAS  PubMed  Google Scholar 

  53. An J, Cai T, Che H, Yu T, Cao Z, Liu X, et al. The changes of miRNA expression in rat hippocampus following chronic lead exposure. Toxicol Lett. 2014;229:158–66.

    Article  CAS  PubMed  Google Scholar 

  54. Fan C, Wu Q, Ye X, Luo H, Yan D, Xiong Y, et al. Role of miR-211 in Neuronal Differentiation and Viability: Implications to Pathogenesis of Alzheimer’s Disease. Front aging neurosci. 2016;8:166.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhuang Z, Ju HQ, Aguilar M, Gocho T, Li H, Iida T, et al. IL1 receptor antagonist inhibits pancreatic cancer growth by abrogating NF-kappaB activation. Clin Cancer Res. 2016;22:1432–44.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang P, Chen Y, Gong M, Zhuang Z, Wang Y, Mu L, et al. Gab2 ablation reverses the stemness of HER2-overexpressing breast cancer cells. Cell Physiol Biochem. 2018;50:52–65.

    Article  ADS  PubMed  Google Scholar 

  57. Liu M, Liu Q, Pei Y, Gong M, Cui X, Pan J, et al. Aqp-1 gene knockout attenuates hypoxic pulmonary hypertension of mice. Arterioscler Thromb Vasc Biol. 2019;39:48–62.

    Article  CAS  PubMed  Google Scholar 

  58. Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, et al. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res. 2014;57:442–50.

    Article  CAS  PubMed  Google Scholar 

  59. Yuan Y, Liao L, Tulis DA, Xu J. Steroid receptor coactivator-3 is required for inhibition of neointima formation by estrogen. Circulation. 2002;105:2653–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Dalian municipal Dengfeng Clinical Medicine Grant Support (No. 2021024). We thank Dr. Paul. J. Chiao provided the murine pancreatic cancer KRAS/p53m/+ cell line from the pancreas of Pdx1-cre/KRASLSL-G12D/p53LSL-R273H mice.

Author information

Authors and Affiliations

Authors

Contributions

Ke Cheng, Miaomiao Gong, and Yuke Ji were responsible for conducting the research and investigation process, explicitly performing the experiments, collecting data, preparing figures, and writing the initial draft. Ke Cheng is also responsible for screening potentially eligible studies, extracting and analyzing data, interpreting results, and updating reference lists. Jinjin Pan and Yuhui Yuan were responsible for preparing and presenting the published work and oversight and leadership responsibility for the research. Qinlong Liu and Ying Zhang provided the acquisition of the financial support for the project. Liang Liu, Xiangqian Guo, and Qiang Wang are responsible for the application of statistical, mathematical, computational, and other formal techniques to analyze or synthesize study data. Shao Li is responsible for the creation of models.

Corresponding authors

Correspondence to Miaomiao Gong, Ying Zhang or Yuhui Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Pan, J., Liu, Q. et al. Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF. Oncogene (2024). https://doi.org/10.1038/s41388-024-02994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-02994-6

Search

Quick links