Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia

Abstract

The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DHODH blockade induces degradation of FLT3-ITD protein.
Fig. 2: DHODH blockade triggers autophagy-mediated FLT3-ITD downregulation.
Fig. 3: The activation of mTORC1 is abolished by DHODH blockade.
Fig. 4: DHODH inhibitor BAY-234 sensitizes AML cells harboring FLT3-ITD mutation to quizartinib in vitro.
Fig. 5: Co-treatment of BAY-234 and quizartinib promote tumor regression and prolong survival in mice.
Fig. 6: BAY-234 overcomes mutation-driven resistance to quizartinib in AML.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published paper and its supplementary information file.

References

  1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nitika, Wei J, Hui AM. Role of Biomarkers in FLT3 AML. Cancers. 2022;14:1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ (Clin Res ed). 2021;375:n2026.

    Google Scholar 

  4. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev. 2019;99:1433–66.

    Article  CAS  PubMed  Google Scholar 

  6. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Long J, Jia MY, Fang WY, Chen XJ, Mu LL, Wang ZY, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2020;135:1472–83.

    Article  PubMed  Google Scholar 

  8. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19:624–31.

    Article  CAS  PubMed  Google Scholar 

  9. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N Engl J Med. 2019;381:1728–40.

    Article  CAS  PubMed  Google Scholar 

  11. Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20:984–97.

    Article  CAS  PubMed  Google Scholar 

  12. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114:2984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette JJD, Eastburn DJ, et al. Clonal Selection with RAS Pathway Activation Mediates Secondary Clinical Resistance to Selective FLT3 Inhibition in Acute Myeloid Leukemia. Cancer Discov. 2019;9:1050–63.

    Article  CAS  PubMed  Google Scholar 

  14. Alotaibi AS, Yilmaz M, Kanagal-Shamanna R, Loghavi S, Kadia TM, DiNardo CD, et al. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors. Blood Cancer Discov. 2021;2:125–34.

    Article  CAS  PubMed  Google Scholar 

  15. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams AB, Nguyen B, Li L, Brown P, Levis M, Leahy D, et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia. 2013;27:48–55.

    Article  CAS  PubMed  Google Scholar 

  17. Weisberg E, Ray A, Nelson E, Adamia S, Barrett R, Sattler M, et al. Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells. PloS ONE. 2011;6:e25351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Albers C, Leischner H, Verbeek M, Yu C, Illert AL, Peschel C, et al. The secondary FLT3-ITD F691L mutation induces resistance to AC220 in FLT3-ITD+ AML but retains in vitro sensitivity to PKC412 and Sunitinib. Leukemia. 2013;27:1416–8.

    Article  CAS  PubMed  Google Scholar 

  19. Reiter K, Polzer H, Krupka C, Maiser A, Vick B, Rothenberg-Thurley M, et al. Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 2018;32:313–22.

    Article  CAS  PubMed  Google Scholar 

  20. Sugamori H, Lee T, Mitomi T, Yamagishi C. Interim results from a postmarketing surveillance study of patients with FLT3-mutated relapsed/refractory AML treated with the FLT3 inhibitor gilteritinib in Japan. Jpn J Clin Oncol. 2022;52:766–73.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kiyoi H. FLT3 INHIBITORS: Recent Advances And Problems For Clinical Application. Nagoya J Med Sci. 2015;77:7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Azhar M, Kincaid Z, Kesarwani M, Ahmed A, Wunderlich M, Latif T, et al. Momelotinib is a highly potent inhibitor of FLT3-mutant AML. Blood Adv. 2022;6:1186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohli L, Kaza N, Coric T, Byer SJ, Brossier NM, Klocke BJ, et al. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res. 2013;73:4395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu H, Lu XX, Wang JR, Yang TY, Li XM, He XS, et al. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation. Autophagy. 2019;15:1506–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Löffler M, Jöckel J, Schuster G, Becker C. Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol Cell Biochem. 1997;174:125–9.

    Article  PubMed  Google Scholar 

  26. Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, et al. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia. 2019;33:2403–15.

    Article  CAS  PubMed  Google Scholar 

  27. Sykes DB, Kfoury YS, Mercier FE, Wawer MJ, Law JM, Haynes MK, et al. Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. Cell. 2016;167:171–86.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. So J, Lewis AC, Smith LK, Stanley K, Franich R, Yoannidis D, et al. Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia. EMBO Mol Med. 2022;14:e15203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peters GJ, Schwartsmann G, Nadal JC, Laurensse EJ, van Groeningen CJ, van der Vijgh WJ, et al. In vivo inhibition of the pyrimidine de novo enzyme dihydroorotic acid dehydrogenase by brequinar sodium (DUP-785; NSC 368390) in mice and patients. Cancer Res. 1990;50:4644–9.

    CAS  PubMed  Google Scholar 

  30. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a Cancer Dependency Map. Cell. 2017;170:564–76.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Breedveld FC, Dayer JM. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis. 2000;59:841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao L, Weetall M, Trotta C, Cintron K, Ma J, Kim MJ, et al. Targeting of Hematologic Malignancies with PTC299, A Novel Potent Inhibitor of Dihydroorotate Dehydrogenase with Favorable Pharmaceutical Properties. Mol Cancer Ther. 2019;18:3–16.

    Article  CAS  PubMed  Google Scholar 

  34. McDonald G, Chubukov V, Coco J, Truskowski K, Narayanaswamy R, Choe S, et al. Selective Vulnerability to Pyrimidine Starvation in Hematologic Malignancies Revealed by AG-636, a Novel Clinical-Stage Inhibitor of Dihydroorotate Dehydrogenase. Mol Cancer Ther. 2020;19:2502–15.

    Article  CAS  PubMed  Google Scholar 

  35. Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim et Biophys Acta. 2008;1782:691–9.

    Article  CAS  Google Scholar 

  36. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36:2491–502.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sudarsanam S, Johnson DE. Functional consequences of mTOR inhibition. Curr Opin Drug Discov Dev 2010;13:31–40.

    CAS  Google Scholar 

  39. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006;3:393–402.

    Article  CAS  PubMed  Google Scholar 

  42. Jenö P, Ballou LM, Novak-Hofer I, Thomas G. Identification and characterization of a mitogen-activated S6 kinase. Proc Natl Acad Sci USA. 1988;85:406–10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brunn GJ, Hudson CC, Sekulić A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997;277:99–101.

    Article  CAS  PubMed  Google Scholar 

  44. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA. 1998;95:1432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273:14484–94.

    Article  CAS  PubMed  Google Scholar 

  46. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jetani H, Garcia-Cadenas I, Nerreter T, Goetz R, Sierra J, Bonig H, et al. FLT3 Inhibitor Treatment Increases FLT3 Expression That Exposes FLT3-ITD+ AML Blasts to Elimination By FLT3 CAR-T Cells. Blood. 2018;132:903.

    Article  Google Scholar 

  48. Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinforma (Oxf, Engl). 2016;32:2866–8.

    Google Scholar 

  49. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–w43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weisberg EL, Schauer NJ, Yang J, Lamberto I, Doherty L, Bhatt S, et al. Inhibition of USP10 induces degradation of oncogenic FLT3. Nat Chem Biol. 2017;13:1207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warmuth M, Kim S, Gu XJ, Xia G, Adrian F. Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2007;19:55–60.

    Article  CAS  PubMed  Google Scholar 

  52. Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100:4372–80.

    Article  PubMed  Google Scholar 

  54. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98:1752–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    Article  CAS  PubMed  Google Scholar 

  56. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18:577–90.

    Article  PubMed  Google Scholar 

  57. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279:33035–8.

    Article  CAS  PubMed  Google Scholar 

  58. Shi DD, Savani MR, Levitt MM, Wang AC, Endress JE, Bird CE, et al. De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell. 2022;40:939–56.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li L, Ng SR, Colón CI, Drapkin BJ, Hsu PP, Li Z, et al. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med. 2019;11:eaaw7852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu D, Wang W, Chen W, Lian F, Lang L, Huang Y, et al. Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells. Haematologica. 2018;103:1472–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou J, Yiying Quah J, Ng Y, Chooi JY, Hui-Min Toh S, Lin B, et al. ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica. 2020;105:2286–97.

    Article  CAS  PubMed  Google Scholar 

  62. Kimmelman AC, White E. Autophagy and Tumor Metabolism. Cell Metab. 2017;25:1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang C, Avery L. To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy. 2008;4:82–4.

    Article  PubMed  Google Scholar 

  65. Mao J, Ma L, Shen Y, Zhu K, Zhang R, Xi W, et al. Arsenic circumvents the gefitinib resistance by binding to P62 and mediating autophagic degradation of EGFR in non-small cell lung cancer. Cell Death Dis 2018;9:963.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Garufi A, Pucci D, D’Orazi V, Cirone M, Bossi G, Avantaggiati ML, et al. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis 2014;5:e1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Booth L, Roberts JL, Poklepovic A, Kirkwood J, Sander C, Avogadri-Connors F, et al. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib. Cancer Biol Ther. 2018;19:132–7.

    Article  CAS  PubMed  Google Scholar 

  68. Schlessinger J. Signal transduction. Autoinhibition control. Science. 2003;300:750–2.

    Article  CAS  PubMed  Google Scholar 

  69. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13:169–78.

    Article  CAS  PubMed  Google Scholar 

  70. Larrue C, Saland E, Boutzen H, Vergez F, David M, Joffre C, et al. Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood. 2016;127:882–92.

    Article  CAS  PubMed  Google Scholar 

  71. Moore AS, Faisal A, Gonzalez de Castro D, Bavetsias V, Sun C, Atrash B, et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia. 2012;26:1462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He X, Zhu Y, Lin YC, Li M, Du J, Dong H, et al. PRMT1-mediated FLT3 arginine methylation promotes maintenance of FLT3-ITD(+) acute myeloid leukemia. Blood. 2019;134:548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (81973362, 82173857), Shanghai Committee of Science and Technology (22S11900900), Guangdong Provincial Medical Science and Technology Research Fund (B2021077) and Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism. We thank the Ministry of Education and the Research Center of Analysis and Test of East China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

This work was conceptualized by HM, JYC, ZHL, WQL, and JH. Mouse model were performed by HM, JYC, ZHL. Cell culture, qPCR, confocal analysis, were done by HM, ZHL. Immunoblot analysis, electron microscopy analysis and plasmid construction experiments were performed by HM, ZHL, WQF, SSL, SYC, and YYZ. BAY-234 was provided by JAC, LXL, YHW, and QX. Bioinformatics analysis were done by HM and ZHL. Data analysis and interpretation were done by HM, JYC, ZHL, KFL, and HYT. The manuscript was drafted by HM, JYC, WQL, and JH, and reviewed and modified by all the authors.

Corresponding authors

Correspondence to Jin Huang or Weiqiang Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal studies and protocols were approved by the Animal Experiments Committee of East China University of Science and Technology (ECUST-2021-03007).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Cui, J., Liu, Z. et al. Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia. Oncogene 42, 3331–3343 (2023). https://doi.org/10.1038/s41388-023-02848-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02848-7

Search

Quick links