Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIMK2 promotes melanoma tumor growth and metastasis through G3BP1-ESM1 pathway-mediated apoptosis inhibition

Abstract

Melanoma is the leading cause of skin cancer-related deaths, and current melanoma therapies, including targeted therapies and immunotherapies, benefit only a subset of metastatic melanoma patients due to either intrinsic or acquired resistance. LIM domain kinase 2 (LIMK2) is a serine/threonine kinase that plays an important role in the regulation of actin filament dynamics. Here, we show that LIMK2 is overexpressed in melanoma, and its genetic or pharmacological inhibition impairs melanoma tumor growth and metastasis in both cell culture and mice. To determine the mechanism by which LIMK2 promotes melanoma tumor growth and metastatic progression, we performed a phosphoproteomics analysis and identified G3BP1 as a key LIMK2 target, which mirrored the effects of LIMK2 inhibition when inhibited. To further determine the role of G3BP1 downstream of LIMK2, we knocked down the expression of G3BP1, performed RNA-seq analysis, and identified ESM1 as a downstream target of G3BP1. G3BP1 was required for ESM1 mRNA stability, and ESM1 ectopic expression rescued LIMK2 or G3BP1 inhibition-induced suppression of melanoma growth and metastatic attributes. These results collectively identify the LIMK2→G3BP1→ESM1 pathway as a facilitator of melanoma tumor growth and metastasis and document that LIMK2 is a therapeutically tractable target for melanoma therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LIMK2 is overexpressed in melanoma cells and its pharmacological inhibition impairs melanoma growth and metastatic attributes.
Fig. 2: Pharmacological inhibition of LIMK2 inhibits melanoma tumor growth and metastasis in naïve and drug-resistant melanoma in vivo.
Fig. 3: TMT10-based global phosphoproteomics analysis identifies key pathways and targets of LIMK2.
Fig. 4: G3BP1 is overexpressed in melanoma and its loss inhibits melanoma growth and metastatic attributes.
Fig. 5: ESM1 is a G3BP1 target, and its mRNA level is regulated by G3BP1 via stabilization.
Fig. 6: ESM1 mediates downstream effects of G3BP1 and LIMK2.
Fig. 7: The LIMK2→G3BP1→ESM1 pathway promotes melanoma growth and metastasis by suppressing apoptosis.
Fig. 8: Proteolysis targeting chimera (PROTAC)-based inhibition of LIMK2 suppresses melanoma tumor growth and metastasis in naïve and drug-resistant melanoma cells in vivo.

Similar content being viewed by others

Data availability

All data and relevant information are available in the main text or the supplementary materials. Materials request should be addressed to nwajapey@uab.edu

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72:409–36.

    Article  PubMed  Google Scholar 

  3. Abbas O, Miller DD, Bhawan J. Cutaneous malignant melanoma: update on diagnostic and prognostic biomarkers. Am J Dermatopathol. 2014;36:363–79.

    Article  PubMed  Google Scholar 

  4. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20:1366–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20:2149–82.

    Article  CAS  PubMed  Google Scholar 

  6. Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26:1131–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463–82.

    Article  CAS  PubMed  Google Scholar 

  9. Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 2018;24:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen P, Cross D, Janne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20:551–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;125:1780–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kannaiyan R, Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev Anticancer Ther. 2018;18:1249–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther. 2022;239:108200.

    Article  CAS  PubMed  Google Scholar 

  15. Curti BD, Faries MB. Recent advances in the treatment of melanoma. N Engl J Med. 2021;384:2229–40.

    Article  CAS  PubMed  Google Scholar 

  16. Po’uha ST, Shum MS, Goebel A, Bernard O, Kavallaris M. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene. 2010;29:597–607.

    Article  PubMed  Google Scholar 

  17. Nunoue K, Ohashi K, Okano I, Mizuno K. LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene. 1995;11:701–10.

    CAS  PubMed  Google Scholar 

  18. Malvi P, Janostiak R, Chava S, Manrai P, Yoon E, Singh K, et al. LIMK2 promotes the metastatic progression of triple-negative breast cancer by activating SRPK1. Oncogenesis. 2020;9:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson EO, Chang KH, Ghosh S, Venkatesh C, Giger K, Low PS, et al. LIMK2 is a crucial regulator and effector of Aurora-A-kinase-mediated malignancy. J Cell Sci. 2012;125:1204–16.

    Article  CAS  PubMed  Google Scholar 

  20. Shahi P, Wang CY, Chou J, Hagerling C, Gonzalez Velozo H, Ruderisch A, et al. GATA3 targets semaphorin 3B in mammary epithelial cells to suppress breast cancer progression and metastasis. Oncogene. 2017;36:5567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aggelou H, Chadla P, Nikou S, Karteri S, Maroulis I, Kalofonos HP, et al. LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance. Virchows Arch. 2018;472:727–37.

    Article  CAS  PubMed  Google Scholar 

  22. Ren T, Zheng B, Huang Y, Wang S, Bao X, Liu K, et al. Osteosarcoma cell intrinsic PD-L2 signals promote invasion and metastasis via the RhoA-ROCK-LIMK2 and autophagy pathways. Cell Death Dis. 2019;10:261.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vlecken DH, Bagowski CP. LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish. 2009;6:433–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Yang C, Nie H, Qiu X, Zhang L, Xiao Y, et al. LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk. Int J Cancer. 2019;144:1345–55.

    Article  PubMed  Google Scholar 

  25. Collazo J, Zhu B, Larkin S, Martin SK, Pu H, Horbinski C, et al. Cofilin drives cell-invasive and metastatic responses to TGF-beta in prostate cancer. Cancer Res. 2014;74:2362–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCabe A, Dolled-Filhart M, Camp RL, Rimm DL. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst. 2005;97:1808–15.

    Article  CAS  PubMed  Google Scholar 

  27. Harrison BA, Almstead ZY, Burgoon H, Gardyan M, Goodwin NC, Healy J, et al. Discovery and development of LX7101, a Dual LIM-Kinase and ROCK inhibitor for the treatment of glaucoma. ACS Med Chem Lett. 2015;6:84–88.

    Article  CAS  PubMed  Google Scholar 

  28. SGC. https://www.thesgc.org/chemical-probes/TH-257.

  29. Collins R, Lee H, Jones DH, Elkins JM, Gillespie JA, Thomas C, et al. Comparative analysis of small-molecule LIMK1/2 inhibitors: chemical synthesis, biochemistry, and cellular activity. J Med Chem. 2022;65:13705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poulikakos PI, Solit DB. Resistance to MEK inhibitors: should we co-target upstream? Sci Signal. 2011;4:pe16.

    Article  PubMed  Google Scholar 

  31. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93.

    Article  CAS  PubMed  Google Scholar 

  32. Sumi T, Matsumoto K, Takai Y, Nakamura T. Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J Cell Biol. 1999;147:1519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285:895–8.

    Article  CAS  PubMed  Google Scholar 

  34. Nikhil K, Chang L, Viccaro K, Jacobsen M, McGuire C, Satapathy SR, et al. Identification of LIMK2 as a therapeutic target in castration-resistant prostate cancer. Cancer Lett. 2019;448:182–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006;7:952–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ou J, Liu H, Nirala NK, Stukalov A, Acharya U, Green MR, et al. dagLogo: An R/Bioconductor package for identifying and visualizing differential amino acid group usage in proteomics data. PLoS One. 2020;15:e0242030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11:7234–42.

    Article  CAS  PubMed  Google Scholar 

  38. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genom. 2008;1:13.

    Article  Google Scholar 

  40. Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet JP, et al. Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res. 2008;6:760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Shen YW, Zhang LJ, Chen JJ, Bian HT, Gu WJ, et al. Targeting endothelial cell-specific molecule 1 protein in cancer: a promising therapeutic approach. Front Oncol. 2021;11:687120.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Yang Q, Yu S, Zhang X. Endocan: A new marker for cancer and a target for cancer therapy. Biomed Rep. 2015;3:279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin H, Rugira T, Ko YS, Park SW, Yun SP, Kim HJ. ESM-1 overexpression is involved in increased tumorigenesis of radiotherapy-resistant breast cancer cells. Cancers. 2020;12:1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu H, Chen X, Huang Z. Identification of ESM1 overexpressed in head and neck squamous cell carcinoma. Cancer Cell Int. 2019;19:118.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cui Y, Guo W, Li Y, Shi J, Ma S, Guan F. Pan-cancer analysis identifies ESM1 as a novel oncogene for esophageal cancer. Esophagus. 2021;18:326–38.

    Article  PubMed  Google Scholar 

  46. Hui R, Campbell DH, Lee CS, McCaul K, Horsfall DJ, Musgrove EA, et al. EMS1 amplification can occur independently of CCND1 or INT-2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene. 1997;15:1617–23.

    Article  CAS  PubMed  Google Scholar 

  47. Fischer JW, Busa VF, Shao Y, Leung AKL. Structure-mediated RNA decay by UPF1 and G3BP1. Mol Cell. 2020;78:70–84 e76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He X, Yuan J, Wang Y. G3BP1 binds to guanine quadruplexes in mRNAs to modulate their stabilities. Nucleic Acids Res. 2021;49:11323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang CH, Wang JX, Cai ML, Shao R, Liu H, Zhao WL. The roles and mechanisms of G3BP1 in tumour promotion. J Drug Target. 2019;27:300–5.

    Article  CAS  PubMed  Google Scholar 

  51. Sun L, Sun C, Sun J, Yang W. Downregulation of ENDOCAN in myeloid leukemia cells inhibits proliferation and promotes apoptosis by suppressing nuclear factor kappa B activity. Mol Med Rep. 2019;19:3247–54.

    CAS  PubMed  Google Scholar 

  52. Cai H, Yang X, Gao Y, Xu Z, Yu B, Xu T, et al. Exosomal microRNA-9-3p secreted from BMSCs downregulates ESM1 to suppress the development of bladder cancer. Mol Ther Nucleic Acids. 2019;18:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  CAS  PubMed  Google Scholar 

  54. Wagenaar TR, Ma L, Roscoe B, Park SM, Bolon DN, Green MR. Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain. Pigment Cell Melanoma Res. 2014;27:124–33.

    Article  CAS  PubMed  Google Scholar 

  55. Bisserier M, Wajapeyee N. Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood. 2018;131:2125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang J, Yu X, Gong W, Liu X, Park KS, Ma A, et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol. 2022;24:384–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu X, Yang X, Xiong Y, Li R, Ito T, Ahmed TA, et al. Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders. Nat Cancer. 2021;2:429–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cromm PM, Crews CM. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol. 2017;24:1181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chem Biol. 2021;2:725–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paiva SL, Crews CM. Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 2019;50:111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ge Y, Jin J, Li J, Ye M, Jin X. The roles of G3BP1 in human diseases (review). Gene. 2022;821:146294.

    Article  CAS  PubMed  Google Scholar 

  62. Sidibe H, Dubinski A, Vande, Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem. 2021;157:944–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zheng H, Zhan Y, Zhang Y, Liu S, Lu J, Yang Y, et al. Elevated expression of G3BP1 associates with YB1 and p-AKT and predicts poor prognosis in nonsmall cell lung cancer patients after surgical resection. Cancer Med. 2019;8:6894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Y, Wang J, Zhong S, Li J, Du W. Overexpression of G3BP1 facilitates the progression of colon cancer by activating betacatenin signaling. Mol Med Rep. 2020;22:4403–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Fu D, Chen Y, Su J, Wang Y, Li X, et al. G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis. 2018;9:501.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mukhopadhyay C, Yang C, Xu L, Liu D, Wang Y, Huang D, et al. G3BP1 inhibits Cul3(SPOP) to amplify AR signaling and promote prostate cancer. Nat Commun. 2021;12:6662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang CH, Liu H, Zhao WL, Zhao WX, Zhou HM, Shao RG. G3BP1 promotes human breast cancer cell proliferation through coordinating with GSK-3beta and stabilizing beta-catenin. Acta Pharmacol Sin. 2021;42:1900–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122:473–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PM, DR, RK, SC, and NW designed the experiments. PM, DR, RK, SC, SB, and KP performed the experiments. PM, DR, RJ, SC, SB, KP, XZ, and NW analyzed the data. PM, DR, RK, SC, and NW wrote the manuscript. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Narendra Wajapeyee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malvi, P., Reddy, D.S., Kumar, R. et al. LIMK2 promotes melanoma tumor growth and metastasis through G3BP1-ESM1 pathway-mediated apoptosis inhibition. Oncogene 42, 1478–1491 (2023). https://doi.org/10.1038/s41388-023-02658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02658-x

Search

Quick links