Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure and function of MuvB complexes

Abstract

Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of cell-cycle gene expression by MuvB and RB-E2F complexes.
Fig. 2: MuvB structure.
Fig. 3: Model for MuvB function in repression and activation of cell-cycle genes.

Similar content being viewed by others

References

  1. Fischer M, Grossmann P, Padi M, DeCaprio JA. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Res. 2016;44:6070–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morgan DO. The cell cycle: principles of control. Published by New Science Press in association with Oxford University Press; Distributed inside North America by Sinauer Associates, Publishers: London Sunderland, MA, 2007.

  3. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000;60:3689–95.

    CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 2017;52:638–62.

  6. Sadasivam S, DeCaprio JA. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 2013;13:585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016;30:1492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim MJ, Cervantes C, Jung YS, Zhang X, Zhang J, Lee SH, et al. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Mol Cell. 2021;81:1698–1714 e1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel AJ, Wan YW, Al-Ouran R, Revelli JP, Cardenas MF, Oneissi M, et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc Natl Acad Sci USA. 2019;116:21715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duan L, Perez RE, Calhoun S, Maki CG. RBL2/DREAM-mediated repression of the Aurora kinase A/B pathway determines therapy responsiveness and outcome in p53 WT NSCLC. Sci Rep. 2022;12:1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dick FA, Goodrich DW, Sage J, Dyson NJ. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer. 2018;18:442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liban TJ, Thwaites MJ, Dick FA, Rubin SM. Structural Conservation and E2F Binding Specificity within the Retinoblastoma Pocket Protein Family. J Mol Biol. 2016;428:3960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mages CF, Wintsche A, Bernhart SH, Müller GA. The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence. Elife. 2017;6:e26876.

  14. Schade AE, Fischer M, DeCaprio JARB. p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res. 2019;47:11197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gartel AL. FOXM1 in Cancer: Interactions and Vulnerabilities. Cancer Res. 2017;77:3135–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barger CJ, Branick C, Chee L, Karpf AR. Pan-Cancer Analyses Reveal Genomic Features of FOXM1 Overexpression in Cancer. Cancers (Basel). 2019;11:251.

  17. Ciciro Y, Sala A. MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis. 2021;10:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iness AN, Felthousen J, Ananthapadmanabhan V, Sesay F, Saini S, Guiley KZ, et al. The cell cycle regulatory DREAM complex is disrupted by high expression of oncogenic B-Myb. Oncogene. 2019;38:1080–92.

    Article  CAS  PubMed  Google Scholar 

  19. Iness AN, Rubinsak L, Meas SJ, Chaoul J, Sayeed S, Pillappa R, et al. Oncogenic B-Myb Is Associated With Deregulation of the DREAM-Mediated Cell Cycle Gene Expression Program in High Grade Serous Ovarian Carcinoma Clinical Tumor Samples. Front Oncol. 2021;11:637193.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roberts MS, Sahni JM, Schrock MS, Piemonte KM, Weber-Bonk KL, Seachrist DD, et al. LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance. Cancer Res. 2020;80:1693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahni JM, Gayle SS, Webb BM, Weber-Bonk KL, Seachrist DD, Singh S, et al. Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors. Cancer Res. 2017;77:5395–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiseman EF, Chen X, Han N, Webber A, Ji Z, Sharrocks AD, et al. Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma. Mol Cancer. 2015;14:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Calvisi DF, Simile MM, Ladu S, Frau M, Evert M, Tomasi ML, et al. Activation of v-Myb avian myeloblastosis viral oncogene homolog-like2 (MYBL2)-LIN9 complex contributes to human hepatocarcinogenesis and identifies a subset of hepatocellular carcinoma with mutant p53. Hepatology. 2011;53:1226–36.

    Article  CAS  PubMed  Google Scholar 

  24. Werwein E, Cibis H, Hess D, Klempnauer KH. Activation of the oncogenic transcription factor B-Myb via multisite phosphorylation and prolyl cis/trans isomerization. Nucleic Acids Res. 2019;47:103–21.

    Article  CAS  PubMed  Google Scholar 

  25. Asthana A, Ramanan P, Hirschi A, Guiley KZ, Wijeratne TU, Shelansky R, et al. The MuvB complex binds and stabilizes nucleosomes downstream of the transcription start site of cell-cycle dependent genes. Nat Commun. 2022;13:526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guiley KZ, Iness AN, Saini S, Tripathi S, Lipsick JS, Litovchick L, et al. Structural mechanism of Myb-MuvB assembly. Proc Natl Acad Sci USA. 2018;115:10016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harrison MM, Ceol CJ, Lu X, Horvitz HR, Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci USA. 2006;103:16782–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell. 2007;26:539–51.

    Article  CAS  PubMed  Google Scholar 

  29. Osterloh L, von Eyss B, Schmit F, Rein L, Hubner D, Samans B, et al. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J. 2007;26:144–57.

    Article  CAS  PubMed  Google Scholar 

  30. White-Cooper H, Leroy D, MacQueen A, Fuller MT. Transcription of meiotic cell cycle and terminal differentiation genes depends on a conserved chromatin associated protein, whose nuclear localisation is regulated. Development. 2000;127:5463–73.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 2011;42:330–41.

    Article  CAS  PubMed  Google Scholar 

  32. Song JJ, Garlick JD, Kingston RE. Structural basis of histone H4 recognition by p55. Genes Dev. 2008;22:1313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2:202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu R, Wang GG. Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem Sci. 2013;38:546–55.

    Article  CAS  PubMed  Google Scholar 

  35. Marceau AH, Felthousen JG, Goetsch PD, Iness AN, Lee HW, Tripathi SM, et al. Structural basis for LIN54 recognition of CHR elements in cell cycle-regulated promoters. Nat Commun. 2016;7:12301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmit F, Cremer S, Gaubatz S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J. 2009;276:5703–16.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuo T, Kuramoto H, Kumazaki T, Mitsui Y, Takahashi T. LIN54 harboring a mutation in CHC domain is localized to the cytoplasm and inhibits cell cycle progression. Cell Cycle. 2012;11:3227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Müller GA, Quaas M, Schumann M, Krause E, Padi M, Fischer M, et al. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Res. 2012;40:1561–78.

  39. Müller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res. 2014;42:10331–50.

  40. Wang C, Hao K, Dong L, Wang J, Zhao L, Xu L, et al. The MuvB complex safeguards embryonic stem cell identity through regulation of the cell cycle machinery. J Biol Chem. 2022;298:101701.

  41. Cheng MH, Andrejka L, Vorster PJ, Hinman A, Lipsick JS. The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open. 2017;6:967–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Beall EL, Lewis PW, Bell M, Rocha M, Jones DL, Botchan MR. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-Muv B. Genes Dev. 2007;21:904–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang J, Benson E, Bausek N, Doggett K. White-Cooper H. Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development. 2007;134:1549–59.

    Article  CAS  PubMed  Google Scholar 

  44. Oji A, Isotani A, Fujihara Y, Castaneda JM, Oura S. Ikawa M. Tesmin, Metallothionein-Like 5, is Required for Spermatogenesis in Micedagger. Biol Reprod. 2020;102:975–83.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Li M, Jiang X, Ma H, Fan S, Li Y, et al. Nuclear translocation of MTL5 from cytoplasm requires its direct interaction with LIN9 and is essential for male meiosis and fertility. PLoS Genet. 2021;17:e1009753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guiley KZ, Liban TL, Felthousen JG, Ramanan P, Litovchick L, Rubin SM. Structural mechanisms of DREAM complex assembly and regulation. Genes Dev. 2015;29:961–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev. 2011;25:801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vorster PJ, Goetsch P, Wijeratne TU, Guiley KZ, Andrejka L, Tripathi S, et al. A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open. 2020;9:bio051508.

  49. Andrejka L, Wen H, Ashton J, Grant M, Iori K, Wang A, et al. Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex. Proc Natl Acad Sci USA. 2011;108:17438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Korenjak M, Taylor-Harding B, Binne UK, Satterlee JS, Stevaux O, Aasland R, et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell. 2004;119:181–93.

    Article  CAS  PubMed  Google Scholar 

  51. Lewis PW, Beall EL, Fleischer TC, Georlette D, Link AJ, Botchan MR. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 2004;18:2929–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmit F, Korenjak M, Mannefeld M, Schmitt K, Franke C, von Eyss B, et al. LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle. 2007;6:1903–13.

    Article  CAS  PubMed  Google Scholar 

  53. Pilkinton M, Sandoval R, Colamonici OR. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene. 2007;26:7535–43.

    Article  CAS  PubMed  Google Scholar 

  54. Forristal C, Henley SA, MacDonald JI, Bush JR, Ort C, Passos DT, et al. Loss of the Mammalian DREAM Complex Deregulates Chondrocyte Proliferation. Mol Cell Biol. 2014;34:2221–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM, et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell. 2000;6:729–35.

    Article  CAS  PubMed  Google Scholar 

  56. Zheng N, Fraenkel E, Pabo CO, Pavletich NP. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 1999;13:666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Müller GA, Stangner K, Schmitt T, Wintsche A, Engeland K. Timing of transcription during the cell cycle: Protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression. Oncotarget. 2017;8:97736–48.

  58. Hurford RK Jr, Cobrinik D, Lee MH, Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 1997;11:1447–63.

    Article  CAS  PubMed  Google Scholar 

  59. Schade AE, Oser MG, Nicholson HE, DeCaprio JA. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene. 2019;38:4962–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goetsch PD, Garrigues JM, Strome S. Loss of the Caenorhabditis elegans pocket protein LIN-35 reveals MuvB’s innate function as the repressor of DREAM target genes. PLoS Genet. 2017;13:e1007088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 1996;10:1633–44.

    Article  CAS  PubMed  Google Scholar 

  62. Taylor-Harding B, Binne UK, Korenjak M, Brehm A, Dyson NJ. p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol Cell Biol. 2004;24:9124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uxa S, Bernhart SH, Mages CFS, Fischer M, Kohler R, Hoffmann S, et al. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res. 2019;47:9087–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen BR, Wang Y, Tubbs A, Zong D, Fowler FC, Zolnerowich N, et al. LIN37-DREAM prevents DNA end resection and homologous recombination at DNA double-strand breaks in quiescent cells. Elife. 2021;10:e68466.

  65. Reichert N, Wurster S, Ulrich T, Schmitt K, Hauser S, Probst L, et al. Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol Cell Biol. 2010;30:2896–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanaka Y, Patestos NP, Maekawa T, Ishii S. B-myb is required for inner cell mass formation at an early stage of development. J Biol Chem. 1999;274:28067–70.

    Article  CAS  PubMed  Google Scholar 

  67. Esterlechner J, Reichert N, Iltzsche F, Krause M, Finkernagel F, Gaubatz S. LIN9, a subunit of the DREAM complex, regulates mitotic gene expression and proliferation of embryonic stem cells. PLoS One. 2013;8:e62882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lewis PW, Sahoo D, Geng C, Bell M, Lipsick JS, Botchan MR. Drosophila lin-52 acts in opposition to repressive components of the Myb-MuvB/dREAM complex. Mol Cell Biol. 2012;32:3218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tabuchi TM, Deplancke B, Osato N, Zhu LJ, Barrasa MI, Harrison MM, et al. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex. PLoS Genet. 2011;7:e1002074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sadasivam S, Duan S, DeCaprio JA. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 2012;26:474–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iltzsche F, Simon K, Stopp S, Pattschull G, Francke S, Wolter P, et al. An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma. Oncogene. 2017;36:110–21.

    Article  CAS  PubMed  Google Scholar 

  72. Wolter P, Hanselmann S, Pattschull G, Schruf E, Gaubatz S. Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy. Oncotarget. 2017;8:11160–72.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rushton JJ, Ness SA. The conserved DNA binding domain mediates similar regulatory interactions for A-Myb, B-Myb, and c-Myb transcription factors. Blood Cells Mol Dis. 2001;27:459–63.

    Article  CAS  PubMed  Google Scholar 

  74. Rushton JJ, Davis LM, Lei W, Mo X, Leutz A, Ness SA. Distinct changes in gene expression induced by A-Myb, B-Myb and c-Myb proteins. Oncogene. 2003;22:308–13.

    Article  CAS  PubMed  Google Scholar 

  75. Knight AS, Notaridou M, Watson RJ. A Lin-9 complex is recruited by B-Myb to activate transcription of G2/M genes in undifferentiated embryonal carcinoma cells. Oncogene. 2009;28:1737–47.

    Article  CAS  PubMed  Google Scholar 

  76. Pattschull G, Walz S, Grundl M, Schwab M, Ruhl E, Baluapuri A, et al. The Myb-MuvB Complex Is Required for YAP-Dependent Transcription of Mitotic Genes. Cell Rep. 2019;27:3533–3546 e3537.

    Article  CAS  PubMed  Google Scholar 

  77. Grundl M, Walz S, Hauf L, Schwab M, Werner KM, Spahr S, et al. Interaction of YAP with the Myb-MuvB (MMB) complex defines a transcriptional program to promote the proliferation of cardiomyocytes. PLoS Genet. 2020;16:e1008818.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wei T, Weiler SME, Toth M, Sticht C, Lutz T, Thomann S, et al. YAP-dependent induction of UHMK1 supports nuclear enrichment of the oncogene MYBL2 and proliferation in liver cancer cells. Oncogene. 2019;38:5541–50.

    Article  CAS  PubMed  Google Scholar 

  79. Eisinger-Mathason TS, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP, et al. Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci USA. 2015;112:E3402–3411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nilsson MB, Sun H, Robichaux J, Pfeifer M, McDermott U, Travers J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med. 2020;12:eaaz4589.

  81. Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol. 2013;33:227–36.

  82. Down CF, Millour J, Lam EW, Watson RJ. Binding of FoxM1 to G2/M gene promoters is dependent upon B-Myb. Biochim Biophys Acta. 2012;1819:855–62.

    Article  CAS  PubMed  Google Scholar 

  83. Branigan TB, Kozono D, Schade AE, Deraska P, Rivas HG, Sambel L, et al. MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Rep. 2021;34:108808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grant GD, Brooks L 3rd, Zhang X, Mahoney JM, Martyanov V, Wood TA, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. 2013;24:3634–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol. 2008;10:1076–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marceau AH, Brison CM, Nerli S, Arsenault HE, McShan AC, Chen E, et al. An order-to-disorder structural switch activates the FoxM1 transcription factor. Elife. 2019;8:eaaz4589.

  87. Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D, Balasubramanian S. FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol. 2015;16:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14:159–69.

    Article  CAS  PubMed  Google Scholar 

  89. Kurimchak A, Grana X. PP2A holoenzymes negatively and positively regulate cell cycle progression by dephosphorylating pocket proteins and multiple CDK substrates. Gene. 2012;499:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Enrico TP, Stallaert W, Wick ET, Ngoi P, Wang X, Rubin SM, et al. Cyclin F drives proliferation through SCF-dependent degradation of the retinoblastoma-like tumor suppressor p130/RBL2. Elife. 2021;10:e70691.

  91. Tedesco D, Lukas J, Reed SI. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev. 2002;16:2946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci Rep. 2017;7:2603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nor Rashid N, Yusof R, Watson RJ. Disruption of repressive p130-DREAM complexes by human papillomavirus 16 E6/E7 oncoproteins is required for cell-cycle progression in cervical cancer cells. J Gen Virol. 2011;92:2620–7.

    Article  PubMed  CAS  Google Scholar 

  94. Wang X, Arceci A, Bird K, Mills CA, Choudhury R, Kernan JL, et al. VprBP/DCAF1 Regulates the Degradation and Nonproteolytic Activation of the Cell Cycle Transcription Factor FoxM1. Mol Cell Biol. 2017;37:e00609–16.

  95. Charrasse S, Carena I, Brondani V, Klempnauer KH, Ferrari S. Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCF(p45Skp2) pathway. Oncogene. 2000;19:2986–95.

    Article  CAS  PubMed  Google Scholar 

  96. Okumura F, Uematsu K, Byrne SD, Hirano M, Joo-Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor alpha. Mol Cell Biol. 2016;36:1803–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Laoukili J, Alvarez-Fernandez M, Stahl M, Medema RH. FoxM1 is degraded at mitotic exit in a Cdh1-dependent manner. Cell Cycle. 2008;7:2720–6.

    Article  CAS  PubMed  Google Scholar 

  98. Park HJ, Costa RH, Lau LF, Tyner AL, Raychaudhuri P. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol Cell Biol. 2008;28:5162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sala A, De Luca A, Giordano A, Peschle C. The retinoblastoma family member p107 binds to B-MYB and suppresses its autoregulatory activity. J Biol Chem. 1996;271:28738–40.

    Article  CAS  PubMed  Google Scholar 

  100. Joaquin M, Bessa M, Saville MK, Watson RJ. B-Myb overcomes a p107-mediated cell proliferation block by interacting with an N-terminal domain of p107. Oncogene. 2002;21:7923–32.

    Article  CAS  PubMed  Google Scholar 

  101. Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci USA. 1998;95:10493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hsu J, Arand J, Chaikovsky A, Mooney NA, Demeter J, Brison CM, et al. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun. 2019;10:2939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Bainor AJ, Saini S, Calderon A, Casado-Polanco R, Giner-Ramirez B, Moncada C, et al. The HDAC-Associated Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to Promote Quiescence. Cell Rep. 2018;25:2797–2807 e2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Adams MK, Banks CAS, Thornton JL, Kempf CG, Zhang Y, Miah S, et al. Differential Complex Formation via Paralogs in the Human Sin3 Protein Interaction Network. Mol Cell Proteom. 2020;19:1468–84.

    Article  CAS  Google Scholar 

  105. Beshiri ML, Holmes KB, Richter WF, Hess S, Islam AB, Yan Q, et al. Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation. Proc Natl Acad Sci USA. 2012;109:18499–504.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, et al. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res. 2014;42:8939–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van Oevelen C, Wang J, Asp P, Yan Q, Kaelin WG Jr., Kluger Y, et al. A role for mammalian Sin3 in permanent gene silencing. Mol Cell. 2008;32:359–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Blanchard DP, Georlette D, Antoszewski L, Botchan MR. Chromatin reader L(3)mbt requires the Myb-MuvB/DREAM transcriptional regulatory complex for chromosomal recruitment. Proc Natl Acad Sci USA. 2014;111:E4234–4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. DeBruhl H, Wen H, Lipsick JS. The complex containing Drosophila Myb and RB/E2F2 regulates cytokinesis in a histone H2Av-dependent manner. Mol Cell Biol. 2013;33:1809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Latorre I, Chesney MA, Garrigues JM, Stempor P, Appert A, Francesconi M, et al. The DREAM complex promotes gene body H2A.Z for target repression. Genes Dev. 2015;29:495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet. 2021;38:273–89.

  112. Johnson LR, Johnson TK, Desler M, Luster TA, Nowling T, Lewis RE, et al. Effects of B-Myb on gene transcription: phosphorylation-dependent activity ans acetylation by p300. J Biol Chem. 2002;277:4088–97.

    Article  CAS  PubMed  Google Scholar 

  113. Oka O, Waters LC, Strong SL, Dosanjh NS, Veverka V, Muskett FW, et al. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex. PLoS One. 2012;7:e52906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Beall EL, Bell M, Georlette D, Botchan MR. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev. 2004;18:1667–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wen H, Andrejka L, Ashton J, Karess R, Lipsick JS. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev. 2008;22:601–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Duffy MJ, Synnott NC, O’Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol. 2020;79:58–67.

  117. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Disco. 2016;6:353–67.

    Article  CAS  Google Scholar 

  118. Boichuk S, Parry JA, Makielski KR, Litovchick L, Baron JL, Zewe JP, et al. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Res. 2013;73:5120–9.

    Article  CAS  PubMed  Google Scholar 

  119. MacDonald J, Ramos-Valdes Y, Perampalam P, Litovchick L, DiMattia GE, Dick FA. A Systematic Analysis of Negative Growth Control Implicates the DREAM Complex in Cancer Cell Dormancy. Mol Cancer Res. 2017;15:371–81.

    Article  CAS  PubMed  Google Scholar 

  120. Fera D, Schultz DC, Hodawadekar S, Reichman M, Donover PS, Melvin J, et al. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. Chem Biol. 2012;19:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory is funded by grants from the National Institutes of Health (R01GM124148, R01GM127707, and R01CA228413 to S.M.R.). Figures 1 and 3 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

GAM, AA and SMR wrote and edited the manuscript.

Corresponding authors

Correspondence to Gerd A. Müller or Seth M. Rubin.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, G.A., Asthana, A. & Rubin, S.M. Structure and function of MuvB complexes. Oncogene 41, 2909–2919 (2022). https://doi.org/10.1038/s41388-022-02321-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02321-x

This article is cited by

Search

Quick links