Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor innervation is triggered by endoplasmic reticulum stress

Abstract

Nerve infiltration in the tumor microenvironment is emerging as a promoter of cancer progression that could be targeted in therapies, but the mechanisms initiating tumor innervation remain to be elucidated. Here we report that endoplasmic reticulum (ER) stress in cancer cells is transmitted to neuronal cells, resulting in neurite outgrowth and tumor innervation. In vitro, the induction of ER stress in various human cancer cells resulted in the synthesis and release of the precursor for brain-derived neurotrophic factor (proBDNF) through a mechanism dependent on the transcription factor X-box binding protein 1 (XBP1). Cancer cell-released proBDNF was found to mediate the transmission of ER stress to neurons, resulting in the stimulation of neurite outgrowth. Next-generation sequencing indicated the increased expression of the Egl-9 family hypoxia inducible factor 3 (EGLN3) that was mediated by c-MYC and necessary to neurite outgrowth induced by proBDNF. In orthotopic tumor xenograft, ER stress stimulated XBP1 and proBDNF expression as well as tumor innervation. Anti-proBDNF antibody inhibited both tumor innervation and cancer progression induced by ER stress. Interestingly, the chemotherapeutic drug 5-Fluorouracil (5-FU) was found to induce ER stress and tumor innervation, and this effect was inhibited by anti-proBDNF antibody. Finally, in human tumors, cancer tissues with nerve infiltration expressed high XBP1 and proBDNF while EGLN3 was upregulated in infiltrated nerves. This study reveals that ER stress participates in tumor innervation through the release of proBDNF and that targeting this pathway could be used in future therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transmission of ER stress from cancer cells to neurons induces neurite outgrowth.
Fig. 2: Inhibition of transmissible tumor ER stress reduces neurite outgrowth.
Fig. 3: XBP1-mediated release of proBDNF by cancer cells is responsible for transmission of ER stress and neurite outgrowth.
Fig. 4: Upregulation of EGLN3 in neuronal cells mediates neurite outgrowth induced by ER-stressed cancer cells.
Fig. 5: c-MYC contributes to proBDNF-mediated EGLN3 upregulation.
Fig. 6: Targeting proBDNF in vivo prevents ER stress-induced tumor innervation.
Fig. 7: ER stress is associated with innervation in human tumors.
Fig. 8: The association between proBDNF, XBP1, EGLN3 and innervation in human tumors.
Fig. 9: Schematic illustration of the mechanism responsible for tumor ER stress-induced tumor innervation.

Similar content being viewed by others

References

  1. Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 2019;9:702–10.

    Article  CAS  PubMed  Google Scholar 

  2. Monje M, Borniger JC, D’Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;181:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.

    Article  PubMed  Google Scholar 

  4. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6:250ra115.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. beta2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33:75–90 e7.

    Article  CAS  PubMed  Google Scholar 

  6. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci USA. 2016;113:3078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci. 2019;22:1289–305.

    Article  CAS  PubMed  Google Scholar 

  8. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16:400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31:21–34.

    Article  CAS  PubMed  Google Scholar 

  10. Demir IE, Reyes CM, Alrawashdeh W, Ceyhan GO, Deborde S, Friess H, et al. Clinically actionable strategies for studying neural influences in cancer. Cancer Cell. 2020;38:11–4.

    Article  CAS  PubMed  Google Scholar 

  11. Pundavela J, Roselli S, Faulkner S, Attia J, Scott RJ, Thorne RF, et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol. 2015;9:1626–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffin N, Rowe CW, Gao F, Jobling P, Wills V, Walker MM, et al. Clinicopathological significance of nerves in esophageal cancer. Am J Pathol. 2020;190:1921–30.

    Article  CAS  PubMed  Google Scholar 

  13. Allen JK, Armaiz-Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 2018;78:3233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic reticulum stress and the Hallmarks of cancer. Trends Cancer. 2016;2:252–62.

    Article  PubMed  Google Scholar 

  16. Murao N, Nishitoh H. Role of the unfolded protein response in the development of central nervous system. J Biochem. 2017;162:155–62.

    Article  CAS  PubMed  Google Scholar 

  17. Valdes P, Mercado G, Vidal RL, Molina C, Parsons G, Court FA, et al. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci USA. 2014;111:6804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, et al. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem. 2007;282:34525–34.

    Article  CAS  PubMed  Google Scholar 

  19. Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E. PC12 cell line: cell types, coating of culture vessels, differentiation and other culture conditions. Cells. 2020;9:958.

    Article  PubMed Central  Google Scholar 

  20. Haberberger RV, Barry C, Matusica D. Immortalized dorsal root ganglion neuron cell lines. Front Cell Neurosci. 2020;14:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lipscomb EA, Sarmiere PD, Crowder RJ, Freeman RS. Expression of the SM-20 gene promotes death in nerve growth factor-dependent sympathetic neurons. J Neurochem. 1999;73:429–32.

    Article  CAS  PubMed  Google Scholar 

  22. Wax SD, Rosenfield CL, Taubman MB. Identification of a novel growth factor-responsive gene in vascular smooth muscle cells. J Biol Chem. 1994;269:13041–7.

    Article  CAS  PubMed  Google Scholar 

  23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nesbit CE, Tersak JM, Grove LE, Drzal A, Choi H, Prochownik EV. Genetic dissection of c-myc apoptotic pathways. Oncogene. 2000;19:3200–12.

    Article  CAS  PubMed  Google Scholar 

  25. Yin XY, Grove LE, Prochownik EV. Mmip-2/Rnf-17 enhances c-Myc function and regulates some target genes in common with glucocorticoid hormones. Oncogene. 2001;20:2908–17.

    Article  CAS  PubMed  Google Scholar 

  26. Karns LR, Ng SC, Freeman JA, Fishman MC. Cloning of complementary DNA for GAP-43, a neuronal growth-related protein. Science. 1987;236:597–600.

    Article  CAS  PubMed  Google Scholar 

  27. Kim JK, Kang KA, Piao MJ, Ryu YS, Han X, Fernando PM, et al. Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells. Environ Toxicol Pharmacol. 2016;44:128–33.

    Article  CAS  PubMed  Google Scholar 

  28. Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 2018;8:1458–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lundberg LM, Alm P, Wharton J, Polak JM. Protein gene product 9.5 (PGP 9.5). A new neuronal marker visualizing the whole uterine innervation and pregnancy-induced and developmental changes in the guinea pig. Histochemistry. 1988;90:9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12:703–19.

    Article  CAS  PubMed  Google Scholar 

  31. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, et al. IRE1alpha-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun. 2019;10:323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaelin WG Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  34. Henze AT, Riedel J, Diem T, Wenner J, Flamme I, Pouyseggur J, et al. Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors. Cancer Res. 2010;70:357–66.

    Article  CAS  PubMed  Google Scholar 

  35. Maertens GN, Cherepanov P, Engelman A. Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J Cell Sci. 2006;119:2563–71.

    Article  CAS  PubMed  Google Scholar 

  36. Xie H, Tang CH, Song JH, Mancuso A, Del Valle JR, Cao J, et al. IRE1alpha RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers. J Clin Investig. 2018;128:1300–16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, et al. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 2011;17:1741–52.

    Article  CAS  PubMed  Google Scholar 

  38. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012;21:488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70:7042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans JP, Winiarski BK, Sutton PA, Ressel L, Duckworth CA, Pritchard DM, et al. Development of an orthotopic syngeneic murine model of colorectal cancer for use in translational research. Lab Anim. 2019;53:598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maclean KN, Greiner LS, Evans JR, Sood SK, Lhotak S, Markham NE, et al. Cystathionine protects against endoplasmic reticulum stress-induced lipid accumulation, tissue injury, and apoptotic cell death. J Biol Chem. 2012;287:31994–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao Z, Zhang Z, Huang Z, Wang R, Yang A, Liao L, et al. Antitumor and immunomodulatory effects of low-dose 5-FU on hepatoma 22 tumor-bearing mice. Oncol Lett. 2014;7:1260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai YY, Ruan CS, Yang CR, Li JY, Kang ZL, Zhou L, et al. ProBDNF signaling regulates depression-like behaviors in rodents under chronic stress. Neuropsychopharmacology. 2016;41:2882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo ST, Chi MN, Yang RH, Guo XY, Zan LK, Wang CY, et al. INPP4B is an oncogenic regulator in human colon cancer. Oncogene. 2016;35:3049–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Newcastle (Australia), the Hunter Cancer Research Alliance, the Hunter Medical Research Institute, and the Maitland Cancer Appeal Committee (NSW Australia). We thank Kristen McEwan for excellent technical contribution. We also thank Kathryn Leaney from Cancer Voice NSW for her excellent consumer contribution.

Author information

Authors and Affiliations

Authors

Contributions

CCJ and HH outlined the study and prepared the paper with input from all co-authors. EE and MM performed the ELISA assays. CCJ, MM, AD, EE, and SF executed the IHC staining. CCJ, AD, EE, PJ, FG and XL completed all the other in vitro assays. YW, LL, and ZH carried out the animal work.

Corresponding author

Correspondence to Hubert Hondermarck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C.C., Marsland, M., Wang, Y. et al. Tumor innervation is triggered by endoplasmic reticulum stress. Oncogene 41, 586–599 (2022). https://doi.org/10.1038/s41388-021-02108-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02108-6

This article is cited by

Search

Quick links