Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pancreatic ductal adenocarcinoma induces neural injury that promotes a transcriptomic and functional repair signature by peripheral neuroglia

Abstract

Perineural invasion (PNI) is the phenomenon whereby cancer cells invade the space surrounding nerves. PNI occurs frequently in epithelial malignancies, but is especially characteristic of pancreatic ductal adenocarcinoma (PDAC). The presence of PNI portends an increased incidence of local recurrence, metastasis and poorer overall survival. While interactions between tumor cells and nerves have been investigated, the etiology and initiating cues for PNI development is not well understood. Here, we used digital spatial profiling to reveal changes in the transcriptome and to allow for a functional analysis of neural-supportive cell types present within the tumor-nerve microenvironment of PDAC during PNI. We found that hypertrophic tumor-associated nerves within PDAC express transcriptomic signals of nerve damage including programmed cell death, Schwann cell proliferation signaling pathways, as well as macrophage clearance of apoptotic cell debris by phagocytosis. Moreover, we identified that neural hypertrophic regions have increased local neuroglial cell proliferation which was tracked using EdU tumor labeling in KPC mice, as well as frequent TUNEL positivity, suggestive of a high turnover rate. Functional calcium imaging studies using human PDAC organotypic slices confirmed nerve bundles had neuronal activity, as well as contained NGFR+ cells with high sustained calcium levels, which are indicative of apoptosis. This study reveals a common gene expression pattern that characterizes solid tumor-induced damage to local nerves. These data provide new insights into the pathobiology of the tumor-nerve microenvironment during PDAC as well as other gastrointestinal cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Digital spatial profiling of the tumor-nerve microenvironment in KPC mice reveals transcriptomic upregulation of apoptotic processes and JUN signaling gene signatures.
Fig. 2: Nerve associated macrophage enriched regions express gene signatures involved in phagocytosis.
Fig. 3: Proliferation of local neuroglia in the tumor nerve microenvironment.
Fig. 4: Neural injury and non-myelinating Schwann cell signatures identified in murine transcriptomic analysis are expressed in human PDAC and gastrointestinal tumors.
Fig. 5: Functional imaging of the tumor nerve microenvironment using organotypic tumor slices from human PDAC donor resections.

Similar content being viewed by others

Data availability

Raw data for this study were generated at the University of California, San Diego Moores by the Sandip Patel Lab (https://moorescancercenter.ucsd.edu/research/centers-and-labs/patel-lab/index.html). Derived data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011;14:45–54. https://doi.org/10.1016/j.cmet.2011.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chien HJ, Chiang TC, Peng SJ, Chung MH, Chou YH, Lee CY, et al. Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation. Am J Physiol Gastrointest Liver Physiol. 2019;317:G694–G706. https://doi.org/10.1152/ajpgi.00116.2019.

    Article  CAS  PubMed  Google Scholar 

  3. Borden P, Houtz J, Leach SD, Kuruvilla R. Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep. 2013;4:287–301. https://doi.org/10.1016/j.celrep.2013.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirchgessner AL, Gershon MD. Innervation of the pancreas by neurons in the gut. J Neurosci. 1990;10:1626–42. https://doi.org/10.1523/JNEUROSCI.10-05-01626.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceyhan GO, Bergmann F, Kadihasanoglu M, Altintas B, Demir IE, Hinz U, et al. Pancreatic neuropathy and neuropathic pain-a comprehensive pathomorphological study of 546 cases. Gastroenterology 2009;136:177–86 e1. https://doi.org/10.1053/j.gastro.2008.09.029.

    Article  PubMed  Google Scholar 

  6. Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. beta2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer. Cancer Cell 2018;33:75–90 e7. https://doi.org/10.1016/j.ccell.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  7. Amit M, Na’ara S, Leider-Trejo L, Binenbaum Y, Kulish N, Fridman E, et al. Upregulation of RET induces perineurial invasion of pancreatic adenocarcinoma. Oncogene 2017;36:3232–9. https://doi.org/10.1038/onc.2016.483.

    Article  CAS  PubMed  Google Scholar 

  8. Liebl F, Demir IE, Mayer K, Schuster T, D'Haese JG, Becker K, et al. The impact of neural invasion severity in gastrointestinal malignancies: a clinicopathological study. Ann Surg. 2014;260:900–7. https://doi.org/10.1097/SLA.0000000000000968.

    Article  PubMed  Google Scholar 

  9. Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Investig. 2016;126:1538–54. https://doi.org/10.1172/JCI82658.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Deborde S, Gusain L, Powers A, Marcadis A, Yu Y, Chen CH, et al. Reprogrammed Schwann Cells Organize into Dynamic Tracks that Promote Pancreatic Cancer Invasion. Cancer Discov. 2022;12:2454–73. https://doi.org/10.1158/2159-8290.CD-21-1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594:3521–31. https://doi.org/10.1113/JP270874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oki G, Wada T, Iba K, Aiki H, Sasaki K, Imai SI, et al. Metallothionein deficiency in the injured peripheral nerves of complex regional pain syndrome as revealed by proteomics. Pain 2012;153:532–9. https://doi.org/10.1016/j.pain.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  13. Huang X, Deng J, Xu T, Xin W, Zhang Y, Ruan X. Downregulation of metallothionein-2 contributes to oxaliplatin-induced neuropathic pain. J Neuroinflamm. 2021;18:91. https://doi.org/10.1186/s12974-021-02139-6.

    Article  CAS  Google Scholar 

  14. Wei Z, Shu S, Zhang M, Xie S, Tang S, Nie K, et al. A Subpopulation of Schwann Cell-Like Cells With Nerve Regeneration Signatures Is Identified Through Single-Cell RNA Sequencing. Front Physiol. 2021;12:637924. https://doi.org/10.3389/fphys.2021.637924.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 2012;75:633–47. https://doi.org/10.1016/j.neuron.2012.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, et al. Macrophages Facilitate Electrical Conduction in the Heart. Cell 2017;169:510–22.e20. https://doi.org/10.1016/j.cell.2017.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19:402–21. https://doi.org/10.1038/s41571-022-00620-6.

    Article  PubMed  Google Scholar 

  18. Ma RY, Black A, Qian BZ. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 2022;43:546–63. https://doi.org/10.1016/j.it.2022.04.008.

    Article  CAS  PubMed  Google Scholar 

  19. Lubitz GS, Brody JD. Not just neighbours: positive feedback between tumour-associated macrophages and exhausted T cells. Nat Rev Immunol. 2022;22:3. https://doi.org/10.1038/s41577-021-00660-6.

    Article  CAS  PubMed  Google Scholar 

  20. Cavel O, Shomron O, Shabtay A, Vital J, Trejo-Leider L, Weizman N, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 2012;72:5733–43. https://doi.org/10.1158/0008-5472.CAN-12-0764.

    Article  CAS  PubMed  Google Scholar 

  21. Bressy C, Lac S, Nigri J, Leca J, Roques J, Lavaut MN, et al. LIF Drives Neural Remodeling in Pancreatic Cancer and Offers a New Candidate Biomarker. Cancer Res. 2018;78:909–21. https://doi.org/10.1158/0008-5472.CAN-15-2790.

    Article  CAS  PubMed  Google Scholar 

  22. Bakst RL, Xiong H, Chen CH, Deborde S, Lyubchik A, Zhou Y, et al. Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression. Cancer Res. 2017;77:6400–14. https://doi.org/10.1158/0008-5472.CAN-17-1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ydens E, Amann L, Asselbergh B, Scott CL, Martens L, Sichien D, et al. Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat Neurosci. 2020;23:676–89. https://doi.org/10.1038/s41593-020-0618-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xuan W, Qu Q, Zheng B, Xiong S, Fan GH. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. J Leukoc Biol. 2015;97:61–9. https://doi.org/10.1189/jlb.1A0314-170R.

    Article  CAS  PubMed  Google Scholar 

  25. Yu Y, Huang X, Di Y, Qu L, Fan N. Effect of CXCL12/CXCR4 signaling on neuropathic pain after chronic compression of dorsal root ganglion. Sci Rep. 2017;7:5707. https://doi.org/10.1038/s41598-017-05954-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang BC, Cao DL, Zhang X, Zhang ZJ, He LN, Li CH, et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Investig. 2016;126:745–61. https://doi.org/10.1172/JCI81950.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605–18. https://doi.org/10.1007/s00401-015-1482-4.

    Article  CAS  PubMed  Google Scholar 

  28. Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, et al. Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun. 2018;9:236. https://doi.org/10.1038/s41467-017-01488-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Avraham O, Feng R, Ewan EE, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. Elife. 2021;10. Epub 20210929. https://doi.org/10.7554/eLife.68457.

  30. Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2008;56:1552–65. https://doi.org/10.1002/glia.20761.

    Article  PubMed  Google Scholar 

  31. Secq V, Leca J, Bressy C, Guillaumond F, Skrobuk P, Nigri J, et al. Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling. Cell Death Dis. 2015;6:e1592. https://doi.org/10.1038/cddis.2014.557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun C, Ye Y, Tan Z, Liu Y, Li Y, Hu W, et al. Tumor-associated nonmyelinating Schwann cell-expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion. Sci Adv. 2023;9:eadd6995. https://doi.org/10.1126/sciadv.add6995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen SH, Zhang BY, Zhou B, Zhu CZ, Sun LQ, Feng YJ. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am J Cancer Res. 2019;9:1–21.

    PubMed  PubMed Central  Google Scholar 

  34. Makhmutova M, Weitz J, Tamayo A, Pereira E, Boulina M, Almaça J, et al. Pancreatic β-Cells Communicate With Vagal Sensory Neurons. Gastroenterology 2021;160:875–88.e11. https://doi.org/10.1053/j.gastro.2020.10.034.

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, Zhao H, Zhang S, Kang E, Chen Y, Ni C, et al. Patterns of expression and function of the p75(NGFR) protein in pancreatic cancer cells and tumours. Eur J Surg Oncol. 2009;35:826–32. https://doi.org/10.1016/j.ejso.2008.10.013.

    Article  CAS  PubMed  Google Scholar 

  36. Harr MW, Distelhorst CW. Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol. 2010;2:a005579. https://doi.org/10.1101/cshperspect.a005579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weitz JR, Tiriac H, Hurtado de Mendoza T, Wascher A, Lowy AM. Using Organotypic Tissue Slices to Investigate the Microenvironment of Pancreatic Cancer: Pharmacotyping and Beyond. Cancers (Basel). 2021;13. Epub 20211005. https://doi.org/10.3390/cancers13194991.

  38. Lim CY, Chang JH, Lee WS, Lee KM, Yoon YC, Kim J, et al. Organotypic slice cultures of pancreatic ductal adenocarcinoma preserve the tumor microenvironment and provide a platform for drug response. Pancreatology 2018;18:913–27. https://doi.org/10.1016/j.pan.2018.09.009.

    Article  CAS  PubMed  Google Scholar 

  39. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  40. Zeng L, Guo Y, Liang J, Chen S, Peng P, Zhang Q, et al. Perineural Invasion and TAMs in Pancreatic Ductal Adenocarcinomas: Review of the Original Pathology Reports Using Immunohistochemical Enhancement and Relationships with Clinicopathological Features. J Cancer 2014;5:754–60. https://doi.org/10.7150/jca.10238.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Habtezion A, Edderkaoui M, Pandol SJ. Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett. 2016;381:211–6. https://doi.org/10.1016/j.canlet.2015.11.049.

    Article  CAS  PubMed  Google Scholar 

  42. Cowan WM. Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Annu Rev Neurosci. 2001;24:551–600. https://doi.org/10.1146/annurev.neuro.24.1.551.

    Article  CAS  PubMed  Google Scholar 

  43. Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K, Saglimbeni JA, et al. PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk. Cancer Res. 2017;77:1868–79. https://doi.org/10.1158/0008-5472.CAN-16-0899-T.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B, Kuljanin M, et al. Neurons Release Serine to Support mRNA Translation in Pancreatic Cancer. Cell 2020;183:1202–18.e25. https://doi.org/10.1016/j.cell.2020.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weiss T, Taschner-Mandl S, Bileck A, Slany A, Kromp F, Rifatbegovic F, et al. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype. Glia 2016;64:2133–53. https://doi.org/10.1002/glia.23045.

    Article  PubMed  Google Scholar 

  46. Brosius Lutz A, Lucas TA, Carson GA, Caneda C, Zhou L, Barres BA, et al. An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. J Neuroinflamm. 2022;19:105 https://doi.org/10.1186/s12974-022-02462-6.

    Article  CAS  Google Scholar 

  47. Iwasaki T, Hiraoka N, Ino Y, Nakajima K, Kishi Y, Nara S, et al. Reduction of intrapancreatic neural density in cancer tissue predicts poorer outcome in pancreatic ductal carcinoma. Cancer Sci. 2019;110:1491–502. https://doi.org/10.1111/cas.13975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jessen KR, Mirsky R, Lloyd AC. Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harb Perspect Biol. 2015;7:a020487. https://doi.org/10.1101/cshperspect.a020487.

    Article  PubMed  PubMed Central  Google Scholar 

  49. De Couck M, Marechal R, Moorthamers S, Van Laethem JL, Gidron Y. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol. 2016;40:47–51. https://doi.org/10.1016/j.canep.2015.11.007.

    Article  PubMed  Google Scholar 

  50. Partecke LI, Kading A, Trung DN, Diedrich S, Sendler M, Weiss F, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFalpha in a murine pancreatic cancer model. Oncotarget 2017;8:22501–12. https://doi.org/10.18632/oncotarget.15019.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci USA. 2016;113:3078–83. https://doi.org/10.1073/pnas.1512603113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Torre D, Lachmann A, Ma'ayan A. BioJupies: Automated Generation of Interactive Notebooks for RNA-Seq Data Analysis in the Cloud. Cell Syst. 2018;7:556–61.e3. https://doi.org/10.1016/j.cels.2018.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Cancer Institute, 1F32CA265052-01 (JRW). Confocal imaging and histology core was done with support from the UCSD Specialized Cancer Support Center P30 grant 2P30CA023100. We would like to thank Chandra Inglis and Karthik Ramesh from the Patel lab for their expert assistance in using the GeoMx Nanostring instrument and bioinformatics processing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JRW, AML. Methodology: JRW, BG, HT, SP, AML. Investigation: JRW, BG, HT, AML. Funding acquisition: JRW, AML. Writing— original draft: JRW. Writing— review & editing: JW, HT, SP, AML.

Corresponding authors

Correspondence to Jonathan Weitz or Andrew M. Lowy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitz, J., Garg, B., Martsinkovskiy, A. et al. Pancreatic ductal adenocarcinoma induces neural injury that promotes a transcriptomic and functional repair signature by peripheral neuroglia. Oncogene 42, 2536–2546 (2023). https://doi.org/10.1038/s41388-023-02775-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02775-7

Search

Quick links