Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Runx1/3-driven adaptive endoplasmic reticulum stress pathways contribute to neurofibromagenesis

Abstract

Neurofibromatosis type 1 (NF1) patients are predisposed to develop plexiform neurofibromas (PNFs). Three endoplasmic reticulum (ER) stress response pathways restore cellular homeostasis. The unfolded protein response (UPR) sensors contribute to tumor initiation in many cancers. We found that all three UPR pathways were activated in mouse and human PNFs, with protein kinase RNA [PKR]-like ER kinase (PERK) the most highly expressed. We tested if neurofibroma cells adapt to ER stress, leading to their growth. Pharmacological or genetic inhibition of PERK reduced mouse neurofibroma-sphere number, and genetic inhibition in PERK in Schwann cell precursors (SCPs) decreased tumor-like lesion numbers in a cell transplantation model. Further, in a PNF mouse model, deletion of PERK in Schwann cells (SCs) and SCPs reduced tumor size, number, and increased survival. Mechanistically, loss of Nf1 activated PERK-eIF2α-ATF4 signaling and increased ATF4 downstream target gene p21 translocation from nucleus to cytoplasm. This nucleus-cytoplasm translocation was mediated by exportin-1. Runx transcriptionally activated ribosome gene expression and increased protein synthesis to allow SCs to adapt to ER stress and tumor formation. We propose that targeting proteostasis might provide cytotoxic and/or potentially durable novel therapy for PNFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ER stress-related genes are up-regulated in both human and mouse plexiform neurofibromas (PNFs).
Fig. 2: PERK expression is increased in mouse and human PNFs and appears to be partially MEK/ERK and RUNX- dependent.
Fig. 3: PERK inhibition affects Schwann cell precursor growth or tumorigenesis.
Fig. 4: Genetic deletion of PERK prolongs survival time and decreases tumor number and size in the Nf1fl/fl;DhhCre PNF mouse.
Fig. 5: Total p21 and cytoplasmic p21 expressions are increased in mouse and human PNFs.
Fig. 6: Exportin-1 regulates p21 translocation from nucleus to cytoplasm.
Fig. 7: Runx relates UPRs and protein synthesis in mouse neurofibromas with the regulation of ribosomal gene functions.

Similar content being viewed by others

Data availability

The materials described in the paper, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. Blatt J, Jaffe R, Deutsch M, Adkins J. Neurofibromatosis and childhood tumors. Cancer 1986;57:1225–9.

    Article  CAS  PubMed  Google Scholar 

  2. Boyd KP, Korf BR, Theos A. Neurofibromatosis type 1. J Am Acad Dermatol. 2009;61:1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCormick F. Ras signaling and NF1. Curr Opin Genet Dev. 1995;5:51–5.

    Article  CAS  PubMed  Google Scholar 

  4. Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 2007;26:4609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varan A, Sen H, Aydin B, Yalcin B, Kutluk T, Akyuz C. Neurofibromatosis type 1 and malignancy in childhood. Clin Genet. 2016;89:341–5.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 2014;26:374–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in. Cancer Cell 2017;168:692–706.

    CAS  Google Scholar 

  9. Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol. 2015;17:829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94.

    Article  CAS  PubMed  Google Scholar 

  11. Mohamed E, Cao Y, Rodriguez PC. Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy. Cancer Immunol Immunother. 2017;66:1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916–9.

    Article  CAS  PubMed  Google Scholar 

  13. Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12:94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oromendia AB, Amon A. Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech. 2014;7:15–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell. 2011;20:400–13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer Cell. 2014;25:563–73.

    Article  CAS  PubMed  Google Scholar 

  17. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    Article  CAS  PubMed  Google Scholar 

  18. Huber AL, Lebeau J, Guillaumot P, Petrilli V, Malek M, Chilloux J, et al. p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol Cell. 2013;49:1049–59.

    Article  CAS  PubMed  Google Scholar 

  19. Hall A, Choi K, Liu W, Rose J, Zhao C, Yu Y, et al. RUNX represses Pmp22 to drive neurofibromagenesis. Sci Adv. 2019;5:eaau8389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S, et al. Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med. 2009;1:236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008;13:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, et al. Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:2172–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Ghosh P, Charnay P, Burns D, Parada L. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002;296:920–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell. 2014;25:652–65.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, et al. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep. 2017;7:43315.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, et al. MEK nhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Investig. 2013;123:340–7.

    Article  CAS  PubMed  Google Scholar 

  27. Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H, et al. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell. 2008;3:658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55:7193–207.

  29. Inoue Y, Kawachi S, Ohkubo T, Nagasaka M, Ito S, Fukuura K, et al. The CDK inhibitor p21 is a novel target gene of ATF4 and contributes to cell survival under ER stress. FEBS Lett. 2017;591:3682–91.

    Article  CAS  PubMed  Google Scholar 

  30. Courtois-Cox S, Genther Williams S, Reczek E, Johnson B, McGillicuddy L, Johannessen C, et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 2006;10:459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roninson IB. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 2002;179:1–14.

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez JA, Span SW, Ferreira CG, Kruyt FA, Giaccone G. CRM1-mediated nuclear export determines the cytoplasmic localization of the antiapoptotic protein Survivin. Exp Cell Res. 2002;275:44–53.

    Article  CAS  PubMed  Google Scholar 

  34. Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat. 2004;28:51–65.

    Article  CAS  PubMed  Google Scholar 

  35. Oakes SA. Endoplasmic reticulum proteostasis: a key checkpoint in cancer. Am J Physiol Cell Physiol. 2017;312:C93–C102.

    Article  PubMed  Google Scholar 

  36. Croft A, Tay KH, Boyd SC, Guo ST, Jiang CC, Lai F, et al. Oncogenic activation of MEK/ERK primes melanoma cells for adaptation to endoplasmic reticulum stress. J Investig Dermatol. 2014;134:488–97.

    Article  CAS  PubMed  Google Scholar 

  37. Sidoli M, Musner N, Silvestri N, Ungaro D, D’Antonio M, Cavener DR, et al. Ablation of Perk in Schwann Cells Improves Myelination in the S63del Charcot-Marie-Tooth 1B Mouse. J Neurosci. 2016;36:11350–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Theocharopoulou G, Vlamos P. Modeling protein misfolding in charcot-marie-tooth disease. Adv Exp Med Biol. 2015;820:91–102.

    Article  PubMed  Google Scholar 

  39. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010;29:3881–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, et al. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 2013;15:R2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, et al. Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress. Cancer Disco. 2014;4:702–15.

    Article  CAS  Google Scholar 

  42. Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Investig. 2010;120:3594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3:245–52.

    Article  CAS  PubMed  Google Scholar 

  44. Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug resistance in cancer. Biochem Pharm. 2012;83:1021–32.

    Article  CAS  PubMed  Google Scholar 

  45. Cordonnier G, Mandoli A, Radhouane A, Hypolite G, Lhermitte L, Belhocine M, et al. CBFbeta-SMMHC regulates ribosomal gene transcription and alters ribosome biogenesis. Leukemia 2017;31:1443–6.

    Article  CAS  PubMed  Google Scholar 

  46. Cai X, Gao L, Teng L, Ge J, Oo ZM, Kumar AR, et al. Runx1 Deficiency Decreases Ribosome Biogenesis and Confers Stress Resistance to Hematopoietic Stem and Progenitor Cells. Cell Stem Cell. 2015;17:165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Zhao X, Yan X, Jessen WJ, Kim MO, Dombi E, et al. Runx1 contributes to neurofibromatosis type 1 neurofibroma formation. Oncogene 2016;35:1468–74.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 2001;15:859–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu J, Keng VW, Patmore DM, Kendall JJ, Patel AV, Jousma E, et al. Insertional Mutagenesis Identifies a STAT3/Arid1b/beta-catenin Pathway Driving Neurofibroma Initiation. Cell Rep. 2016;14:1979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arumugam PI, Scholes J, Perelman N, Xia P, Yee JK, Malik P. Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther. 2007;15:1863–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Bethany Bresnen for editing the figures. We also thank Mr Jonathan Rose for performing genotyping on some mice. This work was supported by NIH R01 NS097233 to JW and R01NS28840 to NR.

Author information

Authors and Affiliations

Authors

Contributions

GH, NR, and JW designed analyses, and discussed results. YN, AH, YY, LH and JAB performed experiments. KC performed bioinformatic analysis. SS reviewed the slides. YN, GH, NR, and JW wrote and edited the paper.

Corresponding author

Correspondence to Jianqiang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Y., Hall, A., Yu, Y. et al. Runx1/3-driven adaptive endoplasmic reticulum stress pathways contribute to neurofibromagenesis. Oncogene 42, 1038–1047 (2023). https://doi.org/10.1038/s41388-023-02620-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02620-x

This article is cited by

Search

Quick links