Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization

Abstract

ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA–resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3′-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR–CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR–CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compromised CHK1 phosphorylation in response to genotoxic stress by TTP knockdown.
Fig. 2: TTP is required for the RSR.
Fig. 3: TTP stabilizes Claspin mRNA through a posttranscriptional mechanism.
Fig. 4: Restoration of the replication stress response by Claspin overexpression in TTP-deficient cells.
Fig. 5: TTP promotes normal replication fork velocity in a Claspin-dependent manner.
Fig. 6: TTP prevents genomic instability and apoptosis in response to replication stress.

Similar content being viewed by others

References

  1. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang TH, Leem SH. Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1. Nucleic Acids Res. 2014;42:4427–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee TH, Park JM, Leem SH, Kang TH. Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair. Oncogene. 2014;33:19–25.

    CAS  PubMed  Google Scholar 

  4. Osborn AJ, Elledge SJ, Zou L. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol. 2002;12:509–16.

    CAS  PubMed  Google Scholar 

  5. Kumagai A, Dunphy WG. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell. 2000;6:839–49.

    CAS  PubMed  Google Scholar 

  6. Yang CC, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, et al. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun. 2016;7:12135.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Freire R, van Vugt MA, Mamely I, Medema RH. Claspin: timing the cell cycle arrest when the genome is damaged. Cell Cycle. 2006;5:2831–4.

    CAS  PubMed  Google Scholar 

  8. Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A. Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol. 2003;195:356–72.

    CAS  PubMed  Google Scholar 

  9. Park JM, Lee TH, Kang TH. Roles of tristetraprolin in tumorigenesis. Int J Mol Sci. 2018;19:3384.

    PubMed Central  Google Scholar 

  10. Ciais D, Cherradi N, Feige JJ. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci. 2013;70:2031–44.

    CAS  PubMed  Google Scholar 

  11. Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity. 1996;4:445–54.

    CAS  PubMed  Google Scholar 

  12. Lee JY, Kim HJ, Yoon NA, Lee WH, Min YJ, Ko BK, et al. Tumor suppressor p53 plays a key role in induction of both tristetraprolin and let-7 in human cancer cells. Nucleic Acids Res. 2013;41:5614–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vesela E, Chroma K, Turi Z, Mistrik M. Common chemical inductors of replication stress: focus on cell-based studies. Biomolecules. 2017;7:19.

    PubMed Central  Google Scholar 

  14. Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol. 2007;27:5806–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin SY, Li K, Stewart GS, Elledge SJ. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci USA. 2004;101:6484–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Petermann E, Helleday T, Caldecott KW. Claspin promotes normal replication fork rates in human cells. Mol Biol Cell. 2008;19:2373–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–103.

    CAS  PubMed  Google Scholar 

  18. Ma XL, Li XC, Tian FJ, Zhang SM, Liu XR, Zhang Y, et al. Effect of the p53-tristetraprolin-stathmin-1 pathway on trophoblasts at maternal-fetal interface. PLoS ONE. 2017;12:e0179852.

    PubMed  PubMed Central  Google Scholar 

  19. Jeong SY, Kumagai A, Lee J, Dunphy WG. Phosphorylated claspin interacts with a phosphate-binding site in the kinase domain of Chk1 during ATR-mediated activation. J Biol Chem. 2003;278:46782–8.

    CAS  PubMed  Google Scholar 

  20. Lindsey-Boltz LA, Sercin O, Choi JH, Sancar A. Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. J Biol Chem. 2009;284:33107–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different—DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci. 2015;128:607–20.

    CAS  PubMed  Google Scholar 

  22. Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, et al. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell. 2006;23:319–29.

    CAS  PubMed  Google Scholar 

  23. Oakes V, Wang W, Harrington B, Lee WJ, Beamish H, Chia KM, et al. Cyclin A/Cdk2 regulates Cdh1 and claspin during late S/G2 phase of the cell cycle. Cell Cycle. 2014;13:3302–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao D, Inuzuka H, Korenjak M, Tseng A, Wu T, Wan L, et al. Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol Biol Cell. 2009;20:3305–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McGarry E, Gaboriau D, Rainey MD, Restuccia U, Bachi A, Santocanale C. The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-phase. Cancer Res. 2016;76:2384–93.

    CAS  PubMed  Google Scholar 

  26. Faustrup H, Bekker-Jensen S, Bartek J, Lukas J, Mailand N. USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. J Cell Biol. 2009;184:13–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu M, Zhao H, Liao J, Xu X. HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res. 2014;42:13074–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan J, Luo K, Deng M, Li Y, Yin P, Gao B, et al. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res. 2014;42:13110–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin Y, Cabrera E, Amoedo H, Hernandez-Perez S, Dominguez-Kelly R, Freire R. USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene. 2015;34:1058–63.

    CAS  PubMed  Google Scholar 

  30. Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta. 2013;1829:666–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfeiffer JR, Brooks SA. Cullin 4B is recruited to tristetraprolin-containing messenger ribonucleoproteins and regulates TNF-alpha mRNA polysome loading. J Immunol. 2012;188:1828–39.

    CAS  PubMed  Google Scholar 

  32. Chini CC, Chen J. Human claspin is required for replication checkpoint control. J Biol Chem. 2003;278:30057–62.

    CAS  PubMed  Google Scholar 

  33. Sercin O, Kemp MG. Characterization of functional domains in human Claspin. Cell Cycle. 2011;10:1599–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Izawa N, Wu W, Sato K, Nishikawa H, Kato A, Boku N, et al. HERC2 interacts with claspin and regulates DNA origin firing and replication fork progression. Cancer Res. 2011;71:5621–5.

    CAS  PubMed  Google Scholar 

  35. Scorah J, McGowan CH. Claspin and Chk1 regulate replication fork stability by different mechanisms. Cell Cycle. 2009;8:1036–43.

    CAS  PubMed  Google Scholar 

  36. Bye AJH, Pugazhendhi D, Woodhouse S, Brien P, Watson R, Turner M, et al. The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skelet Muscle. 2018;8:37.

    Google Scholar 

  37. Carrick DM, Blackshear PJ. Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys. 2007;462:278–85.

    CAS  PubMed  Google Scholar 

  38. Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res. 2009;69:5168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei ZR, Liang C, Feng D, Cheng YJ, Wang WM, Yang DJ, et al. Low tristetraprolin expression promotes cell proliferation and predicts poor patients outcome in pancreatic cancer. Oncotarget. 2016;7:17737–50.

    PubMed  PubMed Central  Google Scholar 

  40. Berglund AE, Scott KE, Li W, Yang C, Fernandez MR, Schaub FX, et al. Tristetraprolin disables prostate cancer maintenance by impairing proliferation and metabolic function. Oncotarget. 2016;7:83462–75.

    PubMed  PubMed Central  Google Scholar 

  41. Rounbehler RJ, Fallahi M, Yang C, Steeves MA, Li W, Doherty JR, et al. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell. 2012;150:563–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yazinski SA, Zou L. Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annu Rev Genet. 2016;50:155–73.

    CAS  PubMed  Google Scholar 

  43. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10:425–48.

    CAS  PubMed  Google Scholar 

  44. Bertoli C, Herlihy AE, Pennycook BR, Kriston-Vizi J, de Bruin RAM. Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage. Cell Rep. 2016;15:1412–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bianco JN, Bergoglio V, Lin YL, Pillaire MJ, Schmitz AL, Gilhodes J, et al. Overexpression of claspin and timeless protects cancer cells from replication stress in a checkpoint-independent manner. Nat Commun. 2019;10:910.

    PubMed  PubMed Central  Google Scholar 

  46. Choi JY, Park JM, Yi JM, Leem SH, Kang TH. Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents. Oncotarget. 2015;6:22575–86.

    PubMed  PubMed Central  Google Scholar 

  47. Park JM, Choi JY, Yi JM, Chung JW, Leem SH, Koh SS, et al. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair. Biochem Biophys Res Commun. 2015;461:543–8.

    CAS  PubMed  Google Scholar 

  48. Lee JM, Park JM, Kang TH. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent. BMB Rep. 2016;49:566–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Keene JD, Komisarow JM, Friedersdorf MB. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc. 2006;1:302–7.

    CAS  PubMed  Google Scholar 

  50. Choi JY, Joh HM, Park JM, Kim MJ, Chung TH, Kang TH. Non-thermal plasma-induced apoptosis is modulated by ATR- and PARP1-mediated DNA damage responses and circadian clock. Oncotarget. 2016;7:32980–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Sang-Eun Lee (UT Health San Antonio) for the insightful discussion and comments. We also thank JWP (University of Ulsan) for generous sharing of reagents. This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2018R1D1A3B07043817 and NRF-2015R1D1A1A01056994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hong Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, TH., Choi, J.Y., Park, JM. et al. Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene 39, 3245–3257 (2020). https://doi.org/10.1038/s41388-020-1220-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1220-9

This article is cited by

Search

Quick links