Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparison of the different mechanisms of cytotoxicity induced by checkpoint kinase I inhibitors when used as single agents or in combination with DNA damage

Abstract

Inhibition of the DNA damage response is an emerging strategy to treat cancer. Understanding how DNA damage response inhibitors cause cytotoxicity in cancer cells is crucial to their further clinical development. This review focuses on three different mechanisms of cell killing by checkpoint kinase I inhibitors (CHK1i). DNA damage induced by chemotherapy drugs, such as topoisomerase I inhibitors, results in S and G2 phase arrest. Addition of CHK1i promotes cell cycle progression before repair is completed resulting in mitotic catastrophe. Ribonucleotide reductase inhibitors such as gemcitabine also arrest cells in S phase by preventing dNTP synthesis. Addition of CHK1i re-activates the DNA helicase to unwind DNA, but in the absence of dNTPs, this leads to excessive single-strand DNA that exceeds the protective capacity of the single-strand-binding protein RPA. Unprotected DNA is subjected to nuclease cleavage, resulting in replication catastrophe. CHK1i alone also kills a subset of cell lines through MRE11 and MUS81-mediated DNA cleavage in S phase cells. The choice of mechanism depends on the activation state of CDK2. Low level activation of CDK2 mediates helicase activation, cell cycle progression, and both replication and mitotic catastrophe. In contrast, high CDK2 activity is required for sensitivity to CHK1i as monotherapy. This high CDK2 activity threshold usually occurs late in the cell cycle to prepare for mitosis, but in CHK1i-sensitive cells, high activity can be attained in early S phase, resulting in DNA cleavage and cell death. This sensitivity to CHK1i has previously been associated with endogenous replication stress, but the dependence on high CDK2 activity, as well as MRE11, contradicts this hypothesis. The major unresolved question is why some cell lines fail to restrain their high CDK2 activity and hence succumb to CHK1i in S phase. Resolving this question will facilitate stratification of patients for treatment with CHK1i as monotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol. 2013;76:358–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20–37.

    CAS  PubMed  Google Scholar 

  3. Plummer ER, Kristeleit RS, Cojocaru E, Haris NM, Carter L, Jones RH, et al. A first-in-human phase I/II trial of SRA737 (a Chk1 Inhibitor) in subjects with advanced cancer. J Clin Oncol. 2019;37:3094–94.

    Google Scholar 

  4. Banerji U, Plummer ER, Moreno V, Ang JE, Quinton A, Drew Y, et al. A phase I/II first-in-human trial of oral SRA737 (a Chk1 inhibitor) given in combination with low-dose gemcitabine in subjects with advanced cancer. J Clin Oncol. 2019;37:3095–95.

    Google Scholar 

  5. Mei L, Zhang J, He K, Zhang J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. J Hematol Oncol J Hematol Oncol. 2019;12:43.

    PubMed  Google Scholar 

  6. Al-Ahmadie H, Iyer G, Hohl M, Asthana S, Inagaki A, Schultz N, et al. Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy. Cancer Discov. 2014;4:1014–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380–94.

    PubMed  Google Scholar 

  8. Buisson R, Boisvert JL, Benes CH, Zou L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol Cell. 2015;59:1011–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Toledo LI, Altmeyer M, Rask M-B, Lukas C, Larsen DH, Povlsen LK, et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–103.

    CAS  PubMed  Google Scholar 

  10. Fugger K, Mistrik M, Neelsen KJ, Yao Q, Zellweger R, Kousholt AN, et al. FBH1 catalyzes regression of stalled replication forks. Cell Rep. 2015;10:1749–57.

    CAS  PubMed  Google Scholar 

  11. Betous R, Mason AC, Rambo RP, Bansbach CE, Badu-Nkansah A, Sirbu BM, et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 2012;26:151–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fugger K, Kit Chu W, Haahr P, Nedergaard Kousholt A, Beck H, Payne MJ, et al. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress. Nat Commun. 2013;4:e1423.

    Google Scholar 

  13. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37:492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, et al. Multisite phosphorylation by Cdk2 and GSK3 controls Cyclin E degradation. Mol Cell. 2003;12:381–92.

    CAS  PubMed  Google Scholar 

  15. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140:349–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol. 2011;193:995–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Forment JV, Blasius M, Guerini I, Jackson SP. Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS ONE. 2011;6:e23517.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol. 2005;25:3553–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842–7.

    CAS  PubMed  Google Scholar 

  20. Ge XQ, Blow JJ. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol. 2010;191:1285–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beck H, Nähse V, Larsen MSY, Groth P, Clancy T, Lees M, et al. Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol. 2010;188:629–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol. 2011;18:721–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17.

    CAS  PubMed  Google Scholar 

  24. Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 2001;21:4129–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakurikar N, Eastman A. Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle. 2016;15:1184–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    CAS  PubMed  Google Scholar 

  27. Ubhi T, Brown GW. Exploiting DNA replication stress for cancer treatment. Cancer Res. 2019;79:1730–9.

    CAS  PubMed  Google Scholar 

  28. Montano R, Chung I, Garner KM, Parry D, Eastman A. Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol Cancer Ther. 2012;11:427–38.

    CAS  PubMed  Google Scholar 

  29. Kim MK, James J, Annunziata CM. Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer. 2015;15:196.

    PubMed  PubMed Central  Google Scholar 

  30. Rawlinson R, Massey AJ. γH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments. BMC Cancer. 2014;14:483.

    PubMed  PubMed Central  Google Scholar 

  31. NJH Warren, Donahue KL, Eastman A. Differential sensitivity to CDK2 inhibition discriminates the molecular mechanisms of CHK1 inhibitors as monotherapy or in combination with the topoisomerase I inhibitor SN38. ACS Pharmacol. Transl Sci. 2019;2:198–209. https://doi.org/10.1021/acsptsci.9b00001.

    Article  Google Scholar 

  32. Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 2013;8:82–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kohn EA, Ruth ND, Brown MK, Livingstone M, Eastman A. Abrogation of the S phase DNA damage checkpoint results in S phase progression or premature mitosis depending on the concentration of 7-hydroxystaurosporine and the kinetics of Cdc25C activation. J Biol Chem. 2002;277:26553–64.

    CAS  PubMed  Google Scholar 

  34. Levesque AA, Fanous AA, Poh A, Eastman A. Defective p53 signaling in p53 wild-type tumors attenuates p21waf1 induction and cyclin B repression rendering them sensitive to Chk1 inhibitors that abrogate DNA damage-induced S and G2 arrest. Mol Cancer Ther. 2008;7:252–62.

    CAS  PubMed  Google Scholar 

  35. Duda H, Arter M, Gloggnitzer J, Teloni F, Wild P, Blanco MG, et al. A mechanism for controlled breakage of under-replicated chromosomes during mitosis. Dev Cell. 2016;39:740–55.

    CAS  PubMed  Google Scholar 

  36. Toledo L, Neelsen KJ, Lukas J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol Cell. 2017;66:735–49.

    CAS  PubMed  Google Scholar 

  37. Heinemann V, Xu Y, Chubb S, Sen A, Hertel L, Grindey G, et al. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2’,2;-difluorodeoxycytidine. Mol Pharmacol. 1990;38:567–72.

    CAS  PubMed  Google Scholar 

  38. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17:7–12.

    Google Scholar 

  39. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 2004;64:3761–6.

    CAS  PubMed  Google Scholar 

  40. Rosell R, Danenberg KD, Alberola V, Bepler G, Sanchez JJ, Camps C, et al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2004;10:1318–25.

    CAS  PubMed  Google Scholar 

  41. Bergman AM, Eijk PP, Ruiz van Haperen VWT, Smid K, Veerman G, Hubeek I, et al. In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res. 2005;65:9510–6.

    CAS  PubMed  Google Scholar 

  42. Warren NJH, Eastman A. Inhibition of checkpoint kinase 1 following gemcitabine-mediated S phase arrest results in CDC7- and CDK2-dependent replication catastrophe. J Biol Chem. 2019;294:1763–78.

    CAS  PubMed  Google Scholar 

  43. Dungrawala H, Rose KL, Bhat KP, Mohni KN, Glick GG, Couch FB, et al. The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol Cell. 2015;59:998–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Montano R, Thompson R, Chung I, Hou H, Khan N, Eastman A. Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration of schedule in vitro and in vivo. BMC Cancer. 2013;13:604.

    PubMed  PubMed Central  Google Scholar 

  45. Eastman A. Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget. 2017;8:8854–66.

    PubMed  Google Scholar 

  46. Montano R, Khan N, Hou H, Seigne J, Ernstoff M, Lewis L, et al. Cell cycle perturbation induced by gemcitabine in human tumor cells in cell culture, xenografts and bladder cancer patients:implications for clinical trial designs combining gemcitabine with a Chk1 inhibitor. Oncotarget. 2017;8:67754–68.

    PubMed  PubMed Central  Google Scholar 

  47. Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, Brandon AKDH, et al. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and MYC driven B-cell lymphoma. Oncotarget. 2016;7:2329–42.

    PubMed  Google Scholar 

  48. Barnard D, Diaz HB, Burke T, Donoho G, Beckmann R, Jones B, et al. LY2603618, a selective CHK1 inhibitor, enhances the anti-tumor effect of gemcitabine in xenograft tumor models. Invest New Drugs. 2016;34:49–60.

    CAS  PubMed  Google Scholar 

  49. Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, et al. Cdc45 is limiting for replication initiation in humans. Cell Cycle. 2016;15:974–85.

    PubMed  PubMed Central  Google Scholar 

  50. Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, et al. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE. 2011;6:e17533.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Koh S-B, Wallez Y, Dunlop CR, Bernaldo de Quirós Fernández S, Bapiro TE, Richards FM, et al. Mechanistic distinctions between CHK1 and WEE1 inhibition guide the scheduling of triple therapy with gemcitabine. Cancer Res. 2018;78:3054–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2012;2:524–39.

    CAS  PubMed  Google Scholar 

  53. Koh S-B, Courtin A, Boyce RJ, Boyle RG, Richards FM, Jodrell DI. CHK1 inhibition synergizes with gemcitabine Initially by destabilizing the DNA replication apparatus. Cancer Res. 2015;75:3583–95.

    CAS  PubMed  Google Scholar 

  54. Del Nagro CJ, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, et al. Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle. 2014;13:303–14.

    PubMed  Google Scholar 

  55. Parsels LA, Tanska DM, Parsels JD, Zabludoff SD, Cuneo KC, Lawrence TS, et al. Dissociation of gemcitabine chemosensitization by CHK1 inhibition from cell cycle checkpoint abrogation and aberrant mitotic entry. Cell Cycle. 2016;15:730–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gadhikar MA, Zhang J, Shen L, Rao X, Wang J, Zhao M, et al. CDKN2A/p16 deletion in head and neck cancer cells is associated with CDK2 activation, replication stress, and vulnerability to CHK1 inhibition. Cancer Res. 2018;78:781–97.

    CAS  PubMed  Google Scholar 

  57. Sen T, Tong P, Stewart CA, Cristea S, Valliani A, Shames DS, et al. CHK1 inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with cisplatin or olaparib. Cancer Res. 2017;77:3870–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Manic G, Signore M, Sistigu A, Russo G, Corradi F, Siteni S, et al. CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut. 2018;67:903–17.

    CAS  PubMed  Google Scholar 

  59. Lowery CD, Dowless M, Renschler M, Blosser W, VanWye AB, Stephens JR, et al. Broad spectrum activity of the checkpoint kinase 1 inhibitor prexasertib as a single agent or chemopotentiator across a range of preclinical pediatric tumor models. Clin Cancer Res. 2019;25:2278–89.

    CAS  Google Scholar 

  60. Nagel R, Avelar AT, Aben N, Proost N, van de Ven M, van der Vliet J, et al. Inhibition of the replication stress response is a synthetic vulnerability in SCLC that acts synergistically in combination with cisplatin. Mol Cancer Ther. 2019;18:762–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kotsantis P, Petermann E, Boulton SJ. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 2018;8:537–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283:232–45.

    CAS  PubMed  Google Scholar 

  63. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 2016;127:582–95.

    CAS  PubMed  Google Scholar 

  65. Reaper PM, Griffiths MR, Long JM, Charrier J-D, MacCormick S, Charlton PA, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7:428–30.

    CAS  PubMed  Google Scholar 

  66. Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC, et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 2010;70:9693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA. Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene. 2012;31:1661–72.

    CAS  PubMed  Google Scholar 

  68. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.

    CAS  PubMed  Google Scholar 

  69. Saldivar JC, Hamperl S, Bocek MJ, Chung M, Bass TE, Cisneros-Soberanis F, et al. An intrinsic S/G2 checkpoint enforced by ATR. Science. 2018;361:806–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Y-W, Jones TL, Martin SE, Caplen NJ, Pommier Y. Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem. 2009;284:18085–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gong C, Liu H, Song R, Zhong T, Lou M, Wang T, et al. ATR–CHK1–E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG. Biochim Biophys Acta BBA-Gene Regul Mech. 2016;1859:612–26.

    CAS  Google Scholar 

  72. D’Angiolella V, Donato V, Forrester FM, Jeong Y-T, Pellacani C, Kudo Y, et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell. 2012;149:1023–34.

    PubMed  PubMed Central  Google Scholar 

  73. Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G, et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell. 2015;28:557–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mohni KN, Kavanaugh GM, Cortez D. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res. 2014;74:2835–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, et al. Ataxia telangiectasia mutated and rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS ONE. 2013;8:e57098.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Thompson R, Montano R, Eastman A. The Mre11 nuclease is critical for the sensitivity of cells to Chk1 inhibition. PLoS ONE. 2012;7:e44021.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lemaçon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8:860.

    PubMed  PubMed Central  Google Scholar 

  78. Sørensen CS, Melixetian M, Klein DK, Helin K. NEK11−Linking CHK1 and CDC25A in DNA damage checkpoint signaling. Cell Cycle. 2010;9:450–5.

    PubMed  Google Scholar 

  79. Arooz T, Yam CH, Siu WY, Lau A, Li KKW, Poon RYC. On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells. Biochemistry. 2000;39:9494–501.

    CAS  PubMed  Google Scholar 

  80. Lu X, Liu J, Legerski RJ. Cyclin E Is stabilized in response to replication fork barriers leading to prolonged S phase arrest. J Biol Chem. 2009;284:35325–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brooks EE, Gray NS, Joly A, Kerwar SS, Lum R, Mackman RL, et al. CVT-313, a specific and potent inhibitor of CDK2 that prevents neointimal proliferation. J Biol Chem. 1997;272:29207–11.

    CAS  PubMed  Google Scholar 

  82. Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How selective are pharmacological inhibitors of cell-cycle-regulating cyclin-dependent kinases? J Med Chem. 2018;61:9105–20.

    CAS  PubMed  Google Scholar 

  83. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci. 2006;103:10660–5.

    CAS  PubMed  Google Scholar 

  84. Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, et al. Highlights of the latest advances in research on CDK inhibitors. Cancers. 2014;6:2224–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Coudreuse D, Nurse P. Driving the cell cycle with a minimal CDK control network. Nature. 2010;468:1074–79.

    CAS  PubMed  Google Scholar 

  86. Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. CDK substrate phosphorylation and ordering the cell cycle. Cell. 2016;167:1750–61.e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013;155:369–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Buis J, Stoneham T, Spehalski E, Ferguson DO. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat Struct Mol Biol. 2012;19:246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu R, Niida H, Nakanishi M. Human SAD1 kinase is involved in UV-induced DNA damage checkpoint function. J Biol Chem. 2004;279:31164–70.

    CAS  PubMed  Google Scholar 

  90. Dietlein F, Kalb B, Jokic M, Noll EM, Strong A, Tharun L, et al. A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer. Cell. 2015;162:146–59.

    CAS  PubMed  Google Scholar 

  91. Pefani D-E, Latusek R, Pires I, Grawenda AM, Yee KS, Hamilton G, et al. RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol. 2014;16:962–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Godfrey M, Touati SA, Kataria M, Jones A, Snijders AP, Uhlmann F. PP2A Cdc55 phosphatase imposes ordered cell-cycle phosphorylation by opposing threonine phosphorylation. Mol Cell. 2017;65:393–.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bremmer SC, Hall H, Martinez JS, Eissler CL, Hinrichsen TH, Rossie S, et al. Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem. 2012;287:1662–9.

    CAS  PubMed  Google Scholar 

  94. Powers BL, Hall MC. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J Cell Sci. 2017;130:2673–81.

    CAS  PubMed  Google Scholar 

  95. Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008;27:3977–85.

    CAS  PubMed  Google Scholar 

  96. Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol. 2010;17:1305–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005;434:598–604.

    CAS  PubMed  Google Scholar 

  98. Fukuda T, Sumiyoshi T, Takahashi M, Kataoka T, Asahara T, Inui H, et al. Alterations of the double-strand break repair gene MRE11 in cancer. Cancer Res. 2001;61:23–6.

    CAS  PubMed  Google Scholar 

  99. Giannini G. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep. 2002;3:248–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. He YJ, Meghani K, Caron M-C, Yang C, Ronato DA, Bian J, et al. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature. 2018;563:522–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Suhasini AN, Sommers JA, Muniandy PA, Coulombe Y, Cantor SB, Masson J-Y, et al. Fanconi anemia group J helicase and MRE11 nuclease interact to facilitate the DNA damage response. Mol Cell Biol. 2013;33:2212–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, et al. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem. 2017;292:10779–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bunch R, Eastman A. Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01) a new G2-checkpoint inhibitor. Clin Cancer Res. 1996;2:791–97.

    CAS  PubMed  Google Scholar 

  104. Carrassa L, Damia G. Unleashing Chk1 in cancer therapy. Cell Cycle. 2011;10:2121–8.

    CAS  PubMed  Google Scholar 

  105. Sausville E, LoRusso P, Carducci M, Carter J, Quinn MF, Malburg L, et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73:539–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Seto T, Esaki T, Hirai F, Arita S, Nosaki K, Makiyama A, et al. Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol. 2013;72:619–27.

    CAS  PubMed  Google Scholar 

  107. Brega N, McArthur GA, Britten C, Wong SG, Wang E, Wilner KD, et al. Phase I clinical trial of gemcitabine (GEM) in combination with PF-00477736 (PF-736), a selective inhibitor of CHK1 kinase. J Clin Oncol. 2010;28:3062–62.

    Google Scholar 

  108. Wehler T, Thomas M, Schumann C, Bosch-Barrera J, Viñolas Segarra N, Dickgreber NJ, et al. A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non‐small cell lung cancer. Lung Cancer. 2017;108:212–6.

    PubMed  Google Scholar 

  109. Scagliotti G, Kang JH, Smith D, Rosenberg R, Park K, Kim S-W, et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest New Drugs. 2016;34:625–35.

    CAS  PubMed  Google Scholar 

  110. Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, et al. Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res. 2012;18:6723–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, et al. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol. 2015;33:1060–6.

    CAS  PubMed  Google Scholar 

  112. Hong D, Infante J, Janku F, Jones S, Nguyen LM, Burris H, et al. Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J Clin Oncol. 2016;34:1764–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee J-M, Karzai FH, Zimmer A, Annunziata CM, Lipkowitz S, Parker B, et al. A phase II study of the cell cycle checkpoint kinases 1 and 2 inhibitor (LY2606368; Prexasertib monomesylate monohydrate) in sporadic high-grade serous ovarian cancer (HGSOC) and germline BRCA mutation-associated ovarian cancer (gBRCAm+ OvCa). Ann Oncol. 2016;27(supplement 6): abstract 8550.

  114. Infante JR, Hollebecque A, Postel-Vinay S, Bauer TM, Blackwood EM, Evangelista M, et al. Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination with gemcitabine in patients with refractory solid tumors. Clin Cancer Res. 2017;23:2423–32.

    CAS  PubMed  Google Scholar 

  115. Italiano A, Infante JR, Shapiro GI, Moore KN, LoRusso PM, Hamilton E, et al. Phase I study of the checkpoint kinase 1 inhibitor GDC-0575 in combination with gemcitabine in patients with refractory solid tumors. Ann Oncol. 2018;29:1304–11.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of the authors has been supported by a grant from the National Cancer Institute (CA117874), and a Cancer Center Support Grant to the Norris Cotton Cancer Center (CA23108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Eastman.

Ethics declarations

Conflict of interest

Dr. Eastman receives research support from Sierra Oncology.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, N.J.H., Eastman, A. Comparison of the different mechanisms of cytotoxicity induced by checkpoint kinase I inhibitors when used as single agents or in combination with DNA damage. Oncogene 39, 1389–1401 (2020). https://doi.org/10.1038/s41388-019-1079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1079-9

This article is cited by

Search

Quick links