Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-throughput RNAi screening reveals cancer-selective lethal targets in the RNA spliceosome

Abstract

Novel therapeutic strategies for non-small-cell lung cancer (NSCLC) are urgently needed. RNA splicing, orchestrated by the spliceosome, is deregulated in many forms of cancer, including NSCLC. Here, we performed high-throughput screening with a small interfering RNA library targeting all annotated human spliceosome proteins to identify cancer-selective lethal targets in the RNA splicing machinery. Silencing of several spliceosome proteins reduced cell viability in a panel of NSCLC cell lines, but not in non-malignant lung fibroblasts and epithelial cells. Interestingly, the cancer-selective lethal target set comprised all seven Sm proteins that, together with small nuclear RNA, form the core structure of most spliceosome subunits. Interfering with Sm protein expression induced apoptosis in NSCLC cells, but not in non-malignant cells. In silico analysis revealed that Sm proteins are frequently upregulated in NSCLC. For several Sm proteins, increased expression showed a positive correlation with disease severity. Together, our results suggest that the Sm proteins represent particularly useful novel targets for selective treatment of NSCLC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382:709–19.

    Article  CAS  PubMed  Google Scholar 

  2. Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33:5311–8.

    Article  CAS  PubMed  Google Scholar 

  3. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010;24:2343–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–18.

    Article  CAS  PubMed  Google Scholar 

  5. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150:1107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonnal S, Vigevani L, Valcárcel J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov. 2012;11:847–59.

    Article  CAS  PubMed  Google Scholar 

  8. Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger RNA (pre-mRNA) spliceosome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs. 2014;32:436–44.

    Article  CAS  PubMed  Google Scholar 

  9. Siebring-van Olst E, Blijlevens M, de Menezes RX, van der Meulen-Muileman IH, Smit EF, van Beusechem VW. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol. 2017;11:534–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12:175–80.

    Article  CAS  PubMed  Google Scholar 

  11. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–D783.

    Article  CAS  PubMed  Google Scholar 

  12. Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15:108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campbell JD, Alexandrov A, Kim J, Wala J, Berger WH, Sekhar C, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet.2016;48:607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quidville V, Alsafadi S, Goubar A, Commo F, Scott V, Pioche-Durieu C, et al. Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy. Cancer Res. 2013;73:2247–58.

    Article  CAS  PubMed  Google Scholar 

  15. Langer W, Sohler F, Leder G, Beckmann G, Seidel H, Gröne J, et al. Exon array analysis using re-defined probe sets results in reliable identification of alternatively spliced genes in non-small cell lung cancer. BMC Genom. 2010;11:676.

    Article  Google Scholar 

  16. Gao Y, Koide K. Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem Biol. 2013;8:895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Citterio L, Azzani T, Duga S, Bianchi G. Genomic organization of the human gamma adducin gene. Biochem Biophys Res Commun. 1999;266:110–4.

    Article  CAS  PubMed  Google Scholar 

  18. Dutertre M, Lacroix-Triki M, Driouch K, de la Grange P, Gratadou L, Beck S, et al. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res. 2010;70:896–905.

    Article  CAS  PubMed  Google Scholar 

  19. Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdiscip Rev RNA. 2017;8:1–19.

    Article  Google Scholar 

  20. Webb TR, Joyner AS, Potter PM. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov Today. 2012;18:43–49.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eskens FALM, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJA, et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19:6296–304.

    Article  CAS  PubMed  Google Scholar 

  22. Pomeranz Krummel DA, Oubridge C, Leung AKW, Li J, Nagai K. Crystal structure of human spliceosomal U1 snRNP at 5.5 resolution. Nature. 2009;458:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weber G, Trowitzsch S, Kastner B, Lührmann R, Wahl MC. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 2010;29:4172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, et al. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell. 1999;3:375–87.

    Article  Google Scholar 

  25. Kanehisa M, Susumu G. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carbon S, et al. AmiGO: Online access to ontology and annotation data. Bioinformatics. 2009;25:288–9.

    Article  CAS  PubMed  Google Scholar 

  27. Croft D, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:691–7.

    Article  Google Scholar 

  28. R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.

  29. Bachas C, Hodzic J, van der Mijn JC, Stoepker C, Verheul HWM, Wolthuis RMF, et al. Rscreenorm: normalization of CRISPR and siRNA screen data for more reproducible hit selection. BMC Bioinforma. 2018;19:1–12.

    Article  Google Scholar 

  30. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  32. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.

    Article  Google Scholar 

  33. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal complementary data sources and analysis options. Sci Signal. 2013;6:1–20.

    Article  Google Scholar 

  34. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Arman B, et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

Download references

Author contributions

Study design was performed by V.W.v.B., experiments were performed by M.B. and I.H.v.d.M.-M., data analysis was performed by M.B. and R.X.d.M., manuscript was written with input from all the authors by M.B. and V.W.v.B., V.W.v.B. and E.F.S. supervised the project.

Funding

This work was supported by Walter Bruckerhoff Stiftung and Stichting VUmc-CCA.

Code availability

Scripts can be accessed via CodeOcean.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor W. van Beusechem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blijlevens, M., van der Meulen-Muileman, I.H., de Menezes, R.X. et al. High-throughput RNAi screening reveals cancer-selective lethal targets in the RNA spliceosome. Oncogene 38, 4142–4153 (2019). https://doi.org/10.1038/s41388-019-0711-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0711-z

This article is cited by

Search

Quick links