Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combining CDK4/6 inhibition with taxanes enhances anti-tumor efficacy by sustained impairment of pRB-E2F pathways in squamous cell lung cancer

Abstract

The CDK4/6 inhibitor palbociclib reduces tumor growth by decreasing retinoblastoma (RB) protein phosphorylation and inducing cell cycle arrest at the G1/S phase transition. Palbociclib in combination with anti-hormonal therapy brings significant benefit to breast cancer patients. In this study, novel combination approaches and underlying molecular/cellular mechanisms for palbociclib were explored in squamous cell lung cancer (SqCLC), the second most common subtype of non-small cell lung cancer. While approximate 20% lung patients benefit from immunotherapy, most SqCLC patients who receive platinum-doublet chemotherapy as first-line treatment, which often includes a taxane, are still in need of more effective combination therapies. Our results demonstrated enhanced cytotoxicity and anti-tumor effect with palbociclib plus taxanes at clinically achievable doses in multiple SqCLC models with diverse cancer genetic backgrounds. Comprehensive gene expression analysis revealed a sustained disruption of pRB-E2F signaling by combination that was accompanied with enhanced regulation of pleiotropic biological effects. These included several novel mechanisms such as abrogation of G2/M and mitotic spindle assembly checkpoints, as well as impaired induction of hypoxia-inducible factor 1 alpha (HIF-1α). The decrease in HIF-1α modulated a couple key angiogenic and anti-angiogenic factors, resulting in an enhanced anti-angiogenic effect. This preclinical work suggests a new therapeutic opportunity for palbociclib in lung and other cancers currently treated with taxane based chemotherapy as standard of care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13:417–30.

    Article  Google Scholar 

  2. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3:1427–38.

    CAS  PubMed  Google Scholar 

  3. VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular pathways: targeting the Cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res. 2015;21:2905–10.

    Article  CAS  Google Scholar 

  4. Dhillon S. Palbociclib: first global approval. Drugs. 2015;75:543–51.

    Article  CAS  Google Scholar 

  5. Syed YY. Ribociclib: first global approval. Drugs. 2017;77:799–807.

    Article  CAS  Google Scholar 

  6. Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell. 2014;26:136–49.

    Article  CAS  Google Scholar 

  7. Dean JL, McClendon AK, Knudsen ES. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J Biol Chem. 2012;287:29075–87.

    Article  CAS  Google Scholar 

  8. Subramaniam D, Periyasamy G, Ponnurangam S, Chakrabarti D, Sugumar A, Padigaru M, et al. CDK-4 inhibitor P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis. Mol Cancer Ther. 2012;11:1598–608.

    Article  CAS  Google Scholar 

  9. Kwong LN, Costello JC, Liu H, Jiang S, Helms TL, Langsdorf AE, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18:1503–10.

    Article  CAS  Google Scholar 

  10. Socinski MA. Update on taxanes in the first-line treatment of advanced non-small-cell lung cancer. Curr Oncol. 2014;21:e691–703.

    Article  CAS  Google Scholar 

  11. Ferrara R, Pilotto S, Peretti U, Caccese M, Kinspergher S, Carbognin L, et al. Tubulin inhibitors in non-small cell lung cancer: looking back and forward. Expert Opin Pharmacother. 2016;17:1113–29.

    Article  CAS  Google Scholar 

  12. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  13. Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res. 2012;18:568–76.

    Article  CAS  Google Scholar 

  14. Zhang XH, Cheng Y, Shin JY, Kim JO, Oh JE, Kang JH. A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS. Cancer Biol Ther. 2013;14:597–605.

    Article  CAS  Google Scholar 

  15. Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther. 2006;5:2676–84.

    Article  CAS  Google Scholar 

  16. Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005;65:3980–5.

    Article  CAS  Google Scholar 

  17. Spilker ME, Chen X, Visswanathan R, Vage C, Yamazaki S, Li G, et al. Found in translation: maximizing the clinical relevance of nonclinical oncology studies. Clin Cancer Res. 2017;23:1080–90.

    Article  CAS  Google Scholar 

  18. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20:620–34.

    Article  CAS  Google Scholar 

  19. Vernell R, Helin K, Muller H. Identification of target genes of the p16INK4A-pRB-E2F pathway. J Biol Chem. 2003;278:46124–37.

    Article  CAS  Google Scholar 

  20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  Google Scholar 

  21. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 2002;16:245–56.

    Article  CAS  Google Scholar 

  22. Bertoli C, Herlihy AE, Pennycook BR, Kriston-Vizi J, de Bruin RA. Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage. Cell Rep. 2016;15:1412–22.

    Article  CAS  Google Scholar 

  23. Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Cell Death Differ. 2012;19:369–77.

    Article  CAS  Google Scholar 

  24. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3:363–75.

    Article  CAS  Google Scholar 

  25. Escuin D, Kline ER, Giannakakou P. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1alpha accumulation and activity by disrupting microtubule function. Cancer Res. 2005;65:9021–8.

    Article  CAS  Google Scholar 

  26. Oh ET, Kim CW, Kim SJ, Lee JS, Hong SS, Park HJ. Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1alpha and causes cancer cell death under hypoxia. Sci Rep. 2016;6:27382.

    Article  CAS  Google Scholar 

  27. Budde A, Schneiderhan-Marra N, Petersen G, Brune B. Retinoblastoma susceptibility gene product pRB activates hypoxia-inducible factor-1 (HIF-1). Oncogene. 2005;24:1802–8.

    Article  CAS  Google Scholar 

  28. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7:345–50.

    Article  CAS  Google Scholar 

  29. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2:1117–33.

    Article  Google Scholar 

  30. Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis. 2013;16:481–92.

    Article  CAS  Google Scholar 

  31. Newcomb EW, Ali MA, Schnee T, Lan L, Lukyanov Y, Fowkes M, et al. Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1alpha expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy. Neuro Oncol. 2005;7:225–35.

    Article  CAS  Google Scholar 

  32. Deville JL, Salas S, Figarella-Branger D, Ouafik L, Daniel L. Adrenomedullin as a therapeutic target in angiogenesis. Expert Opin Ther Targets. 2010;14:1059–72.

    Article  CAS  Google Scholar 

  33. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.

    Article  CAS  Google Scholar 

  34. Stetler-Stevenson WG, Seo DW. TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med. 2005;11:97–103.

    Article  CAS  Google Scholar 

  35. Raspe E, Coulonval K, Pita JM, Paternot S, Rothe F, Twyffels L, et al. CDK4 phosphorylation status and a linked gene expression profile predict sensitivity to palbociclib. EMBO Mol Med. 2017;9:1052–66.

    Article  CAS  Google Scholar 

  36. Gong X, Litchfield LM, Webster Y, Chio LC, Wong SS, Stewart TR, et al. Genomic aberrations that activate D-type cyclins are associated with enhanced sensitivity to the CDK4 and CDK6 inhibitor abemaciclib. Cancer Cell. 2017;32:761–76 e766.

    Article  CAS  Google Scholar 

  37. Johnson J, Thijssen B, McDermott U, Garnett M, Wessels LF, Bernards R. Targeting the RB-E2F pathway in breast cancer. Oncogene. 2016;35:4829–35.

    Article  CAS  Google Scholar 

  38. Manning AL, Dyson NJ. RB: mitotic implications of a tumour suppressor. Nat Rev Cancer. 2012;12:220–6.

    Article  CAS  Google Scholar 

  39. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting mitosis in cancer: emerging strategies. Mol Cell. 2015;60:524–36.

    Article  CAS  Google Scholar 

  40. Tse AN, Carvajal R, Schwartz GK. Targeting checkpoint kinase 1 in cancer therapeutics. Clin Cancer Res. 2007;13:1955–60.

    Article  CAS  Google Scholar 

  41. Witkiewicz AK, Ertel A, McFalls J, Valsecchi ME, Schwartz G, Knudsen ES. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res. 2012;18:5110–22.

    Article  CAS  Google Scholar 

  42. Knudsen KE, Booth D, Naderi S, Sever-Chroneos Z, Fribourg AF, Hunton IC, et al. RB-dependent S-phase response to DNA damage. Mol Cell Biol. 2000;20:7751–63.

    Article  CAS  Google Scholar 

  43. Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, Knudsen KE, et al. RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle. 2010;9:4153–63.

    Article  CAS  Google Scholar 

  44. Bosco EE, Wang Y, Xu H, Zilfou JT, Knudsen KE, Aronow BJ, et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest. 2007;117:218–28.

    Article  CAS  Google Scholar 

  45. Gabellini C, Del Bufalo D, Zupi G. Involvement of RB gene family in tumor angiogenesis. Oncogene. 2006;25:5326–32.

    Article  CAS  Google Scholar 

  46. Bakker WJ, Weijts BG, Westendorp B, de Bruin A. HIF proteins connect the RB-E2F factors to angiogenesis. Transcription. 2013;4:62–66.

    Article  Google Scholar 

  47. Schaal C, Pillai S, Chellappan SP. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res. 2014;121:147–82.

    Article  CAS  Google Scholar 

  48. Weijts BG, Bakker WJ, Cornelissen PW, Liang KH, Schaftenaar FH, Westendorp B, et al. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. EMBO J. 2012;31:3871–84.

    Article  CAS  Google Scholar 

  49. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  Google Scholar 

  50. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.

    Article  CAS  Google Scholar 

  51. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  Google Scholar 

  52. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.

    Article  CAS  Google Scholar 

  53. Bretz F, Hothorn T, Westfall PH. Multiple comparisons using R. Boca Raton, FL: CRC Press; 2011.

    Google Scholar 

Download references

Acknowledgements

We thank Kim Arndt and David Shields for project discussions; John Chionis for assistance with confocal microscopy; Lianglin Zhang for knowledge of angiogenesis; Danan Li and Lars Anders for knowledge of senescence assays; Xiaoling Xia, Patrick Lappin, Michelle Lee and Timothy Affolter for technical assistance with IHC studies and data analysis; Xianxian Zheng for coordinating RNA-Seq analysis; Stephanie Shi for coordinating in vivo studies with CRO; Mary Spilker for information of clinically relevant doses for drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wei.

Ethics declarations

Conflict of interest

JC, ZZ, TCN, SD, PAR, TVA, JSH, SLW and PW are current employees of Pfizer, Inc. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhu, Z., Wang, H. et al. Combining CDK4/6 inhibition with taxanes enhances anti-tumor efficacy by sustained impairment of pRB-E2F pathways in squamous cell lung cancer. Oncogene 38, 4125–4141 (2019). https://doi.org/10.1038/s41388-019-0708-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0708-7

This article is cited by

Search

Quick links