Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: Hsp90β promotes aggressive vasculogenic mimicry via epithelial–mesenchymal transition in hepatocellular carcinoma

This article was retracted on 21 June 2023

This article has been updated

Abstract

Hepatocellular carcinoma (HCC) is a typical hypervascular solid tumor. Vasculogenic mimicry (VM) formed by aggressive tumor cells to mimic vasculogenic networks plays an important role in the tumor malignancy of HCC. Hsp90β promotes endothelial cell-dependent angiogenesis in HCC. However, the relationship between Hsp90β and VM formation is unclear. In this study, we found that Hsp90β is positively correlated with VM and EMT marker proteins in HCC tissues and promotes tube formation, cell migration, and invasion in vitro. Hsp90β interacts with Twist1 and promotes its deubiquitination and stabilization to nuclear translocation and enhances the VE-cadherin promoter activity. Results of in vitro analysis indicate that Hsp90β enhances the tumor VM in tumor-burdened mice, and the Hsp90 inhibitor NVP-BEP800 suppresses VM formation by releasing Hsp90β and Twist1 interaction. This study provides a potential antitumor therapy for inhibiting VM by targeting Hsp90β in HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Chang SX, Li GW, Chen Y, Bao H, Zhou L, Yuan J, et al. Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging. PLoS ONE. 2013;8:e65895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao Z, Sun B, Zhao X, Zhang Y, Gu Q, Liang X, et al. The expression and functional significance of Runx2 in hepatocellular carcinoma: its role in vasculogenic mimicry and epithelial-mesenchymal transition. Int J Mol Sci. 2017;18:500.

  3. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer. 2013;49:3914–23.

    Article  PubMed  Google Scholar 

  5. Wagenblast E, Soto M, Gutierrez-Angel S, Hartl CA, Gable AL, Maceli AR, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 2015;520:358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res. 2012;18:2726–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hess AR, Seftor EA, Seftor RE, Hendrix MJ. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63:4757–62.

    CAS  PubMed  Google Scholar 

  9. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA. 2001;98:8018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51:545–56.

    Article  CAS  PubMed  Google Scholar 

  11. Hess AR, Seftor EA, Gardner LM, Carles-Kinch K, Schneider GB, Seftor RE, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 2001;61:3250–5.

    CAS  PubMed  Google Scholar 

  12. Su M, Feng YJ, Yao LQ, Cheng MJ, Xu CJ, Huang Y, et al. Plasticity of ovarian cancer cell SKOV3ip and vasculogenic mimicry in vivo. Int J Gynecol Cancer. 2008;18:476–86.

    Article  CAS  PubMed  Google Scholar 

  13. Hess AR, Hendrix MJ. Focal adhesion kinase signaling and the aggressive melanoma phenotype. Cell Cycle. 2006;5:478–80.

    Article  CAS  PubMed  Google Scholar 

  14. Fan YL, Zheng M, Tang YL, Liang XH. A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review). Oncol Lett. 2013;6:1174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112:1776–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Sun B, Qi L, Li H, Gao J, Leng X. Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci. 2012;103:813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, et al. ZEB2 promotes vasculogenic mimicry by TGF-beta1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol. 2015;98:352–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, et al. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 2011;54:1690–706.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med. 2004;82:488–99.

    Article  CAS  PubMed  Google Scholar 

  21. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478–82.

    CAS  PubMed  Google Scholar 

  22. Meng J, Liu Y, Han J, Tan Q, Chen S, Qiao K, et al. Hsp90beta promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma. Mol Cancer. 2017;16:72.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee JG, Kim W, Gygi S, Ye Y. Characterization of the deubiquitinating activity of USP19 and its role in endoplasmic reticulum-associated degradation. J Biol Chem. 2014;289:3510–7.

    Article  CAS  PubMed  Google Scholar 

  24. He WT, Zheng XM, Zhang YH, Gao YG, Song AX, van der Goot FG, et al. Cytoplasmic ubiquitin-specific protease 19 (USP19) modulates aggregation of polyglutamine-expanded ataxin-3 and huntingtin through the HSP90 chaperone. PLoS ONE. 2016;11:e0147515.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Delgado-Bellido D, Serrano-Saenz S, Fernandez-Cortes M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer. 2017;16:65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol. 2016;37:185–97.

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Xu Z, Zhu L, Liao S, Guo W. Transcriptome analysis of porcine thymus following porcine cytomegalovirus infection. PLoS One. 2014;9:e113921.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhong W, Chen S, Zhang Q, Xiao T, Qin Y, Gu J, et al. Doxycycline directly targets PAR1 to suppress tumor progression. Oncotarget. 2017;8:16829–42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Massey AJ, Schoepfer J, Brough PA, Brueggen J, Chene P, Drysdale MJ, et al. Preclinical antitumor activity of the orally available heat shock protein 90 inhibitor NVP-BEP800. Mol Cancer Ther. 2010;9:906–19.

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Wang W, Shao Q, Xiao G, Cheng J, Yuan Y, et al. Irradiation facilitates the inhibitory effect of the heat shock protein 90 inhibitor NVP-BEP800 on the proliferation of malignant glioblastoma cells through attenuation of the upregulation of heat shock protein 70. Exp Ther Med. 2014;8:893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang S, Zhang D, Sun B. Vasculogenic mimicry: current status and future prospects. Cancer Lett. 2007;254:157–64.

    Article  CAS  PubMed  Google Scholar 

  32. Sun B, Zhang S, Zhao X, Zhang W, Hao X. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol. 2004;25:1609–14.

    PubMed  Google Scholar 

  33. Hendrix MJ, Seftor EA, Seftor RE, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther. 2016;159:83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Deng X, Zang N, Li H, Li G, Li C, et al. Transcriptomic and proteomic investigation of HSP90A as a potential biomarker for HCC. Med Sci Monit. 2015;21:4039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mei Y, Hahn AA, Hu S, Yang X. The USP19 deubiquitinase regulates the stability of c-IAP1 and c-IAP2. J Biol Chem. 2011;286:35380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Song N, Liu L, Liu X, Ding X, Song X, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 2017;8:14866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant nos. 81572838, 81402973 and 81703581), Tianjin Natural Science and Technology Fund (Grant no. 15JCYBJC26400), Tianjin Science and Technology Project (grant no.15PTGCCX00140), and the National Science and Technology Major Project (grant no.2017ZX09306007).

Author contributions

JM, TS and CY designed experiments. JM, SC, YYL, JXH, and XRW performed the research. WLZ and WFG. carried out the bioinformatics analysis. QT, QZ, and HJL performed the animal experiment. JM and YRL performed the pathological analysis. JM, HGZ constructed the cloning vector. JM and TS wrote the manuscript, with contributions from all other authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Sun or Cheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Jing Meng, Shuang Chen

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Chen, S., Lei, Yy. et al. RETRACTED ARTICLE: Hsp90β promotes aggressive vasculogenic mimicry via epithelial–mesenchymal transition in hepatocellular carcinoma. Oncogene 38, 228–243 (2019). https://doi.org/10.1038/s41388-018-0428-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0428-4

This article is cited by

Search

Quick links