E-cadherin in contact inhibition and cancer

Abstract

E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6:622–34.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Gumbiner B, Stevenson B, Grimaldi A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol. 1988;107:1575–87.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Thoreson MA, Anastasiadis PZ, Daniel JM, Ireton RC, Wheelock MJ, Johnson KR, et al. Selective uncoupling ofp120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol. 2000;148:189–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Gottardi CJ, Gumbiner BM. Adhesion signaling: how beta-catenin interacts with its partners. Curr Biol. 2001;11:R792–4.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989;8:1711–7.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  6. 6.

    Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA. 2011;108:11930–5.

    Article  PubMed  Google Scholar 

  7. 7.

    Padua D, Massague J. Roles of TGFbeta in metastasis. Cell Res. 2009;19:89–102.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 2004;23:1739–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A. A role for the E-cadherin cell–cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol. 1991;115:517–33.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27:6920–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392:190–3.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Et Biophys Acta. 1994;1198:11–26.

    CAS  Google Scholar 

  13. 13.

    Kim NG, Gumbiner BM. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol. 2015;210:503–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Levine EM, Becker Y, Boone CW, Eagle H. Contact inhibition, macromolecular synthesis, and polyribosomes in cultured human diploid fibroblasts. Proc Natl Acad Sci USA. 1965;53:350–6.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Ribatti D. A revisited concept: contact inhibition of growth. from cell biology to malignancy. Exp Cell Res. 2017;359:17–9.

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Fagotto F, Gumbiner BM. Cell contact-dependent signaling. Dev Biol. 1996;180:445–54.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Abercrombie M, Heaysman JE. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res. 1953;5:111–31.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Mayor R, Carmona-Fontaine C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 2010;20:319–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Scarpa E, Szabo A, Bibonne A, Theveneau E, Parsons M, Mayor R. Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev Cell. 2015;34:421–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Lieberman MA, Glaser L. Density-dependent regulation of cell growth: an example of a cell-cell recognition phenomenon. J Membr Biol. 1981;63:1–11.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Whittenberger B, Glaser L. Inhibition of DNA synthesis in cultures of 3T3 cells by isolated surface membranes. Proc Natl Acad Sci USA. 1977;74:2251–5.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS. E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitorp27(KIP1). J Cell Biol. 1998;142:557–71.

    Article  Google Scholar 

  24. 24.

    Motti ML, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F, et al. Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis. 2005;26:1021–34.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Watabe M, Nagafuchi A, Tsukita S, Takeichi M. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol. 1994;127:247–56.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Perrais M, Chen X, Perez-Moreno M, Gumbiner BM. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell. 2007;18:2013–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Kim JH, Kushiro K, Graham NA, Asthagiri AR. Tunable interplay between epidermal growth factor and cell-cell contact governs the spatial dynamics of epithelial growth. Proc Natl Acad Sci USA. 2009;106:11149–53.

    Article  PubMed  Google Scholar 

  28. 28.

    Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res. 2017;358:78–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. 29.

    Klezovitch O, Vasioukhin V. Cadherin signaling: keeping cells in touch. F1000Res. 2015;4:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    McClatchey AI, Yap AS. Contact inhibition (of proliferation) redux. Curr Opin Cell Biol. 2012;24:685–94.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Priya R, Yap AS. Active tension: the role of cadherin adhesion and signaling in generating junctional contractility. Curr Top Dev Biol. 2015;112:65–102.

    Article  PubMed  Google Scholar 

  32. 32.

    Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, et al. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling. J Cell Biol. 2017;216:3073–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Hirata H, Samsonov M, Sokabe M. Actomyosin contractility provokes contact inhibition in E-cadherin-ligated keratinocytes. Sci Rep. 2017;7:46326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Gumbiner BM, Kim NG. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 2014;127:709–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, et al. Polarity-dependent distribution of angiomotin localizes hippo signaling in preimplantation embryos. Curr Biol. 2013;23:1181–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N, et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell. 2011;19:527–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell . 2007;130:1120–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Rauskolb C, Sun S, Sun G, Pan Y, Irvine KD. Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell. 2014;158:143–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011;144:782–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, et al. Alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal. 2011;4:ra33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol. 2007;177:893–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Yi C, Kissil J. Merlin and angiomotin in Hippo-Yap signaling. In: Oren M, Aylon Y, editors. The Hippo signaling pathway and cancer. New York: Springer; 2013.

    Google Scholar 

  45. 45.

    Yang CC, Graves HK, Moya IM, Tao C, Hamaratoglu F, Gladden AB, et al. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci USA. 2015;112:1785–90.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16:425–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 2013;154:1342–55.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Sun S, Reddy BV, Irvine KD. Localization of Hippo signalling complexes and Warts activation in vivo. Nat Commun. 2015;6:8402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X. Crumbs3-mediated polarity directs airway epithelial cell fate through the Hippo pathway effector yap. Dev Cell. 2015;34:283–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Fan R, Kim NG, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA. 2013;110:2569–74.

    Article  PubMed  Google Scholar 

  52. 52.

    Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154:1047–59.

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13:591–600.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26:54–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Benham-Pyle BW, Pruitt BL, Nelson WJ. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science. 2015;348:1024–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. Embo J. 2011;30:2325–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Schroeder MC, Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol. 2012;23:803–11.

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Mana-Capelli S, Paramasivam M, Dutta S, McCollum D. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell. 2014;25:1676–85.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development. 2016;143:1674–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V. alphaE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev. 2016;30:798–811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. 61.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 2009;1:a003129.

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol. 2017;11:755–69.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell. 2016;27:3233–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Cheung KJ, Ewald AJ. A collective route to metastasis: seeding by tumor cell clusters. Science . 2016;352:167–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. 69.

    Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155:1639–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 1995;55:4557–60.

    PubMed  CAS  Google Scholar 

  71. 71.

    Nabeshima K, Inoue T, Shimao Y, Kataoka H, Koono M. Cohort migration of carcinoma cells: differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histol Histopathol. 1999;14:1183–97.

    PubMed  CAS  Google Scholar 

  72. 72.

    Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1:23–32.

    Article  PubMed  Google Scholar 

  73. 73.

    Maiden SL, Petrova YI, Gumbiner BM. Microtubules inhibit E-cadherin adhesive activity by maintaining phosphorylated p120-catenin in a colon carcinoma cell model. PLoS One. 2016;11:e0148574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. 74.

    Petrova YI, Spano MM, Gumbiner BM. Conformational epitopes at cadherin calcium-binding sites and p120-catenin phosphorylation regulate cell adhesion. Mol Biol Cell. 2012;23:2092–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. 75.

    Shashikanth N, Petrova YI, Park S, Chekan J, Maiden S, Spano M, et al. Allosteric regulation of E-cadherin adhesion. J Biol Chem. 2015;290:21749–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. 76.

    Zhong Y, Brieher WM, Gumbiner BM. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J Cell Biol. 1999;144:351–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. 77.

    Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, et al. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell . 1994;79:791–803.

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Fagotto F, Funayama N, Gluck U, Gumbiner BM. Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J Cell Biol. 1996;132:1105–14.

    Article  PubMed  CAS  Google Scholar 

  79. 79.

    Gottardi CJ, Gumbiner BM. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol. 2004;167:339–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. 80.

    Gottardi CJ, Wong E, Gumbiner BM. E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001;153:1049–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. 81.

    Cox RT, Pai LM, Kirkpatrick C, Stein J, Peifer M. Roles of the C terminus of armadillo in wingless signaling in Drosophila. Genetics. 1999;153:319–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. 82.

    van de Wetering M, Barker N, Harkes IC, van der Heyden M, Dijk NJ, Hollestelle A, et al. Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res. 2001;61:278–84.

    PubMed  Google Scholar 

  83. 83.

    Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A, et al. Beta- and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ. 1999;10:369–76.

    PubMed  CAS  Google Scholar 

  84. 84.

    Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G. Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene. 2007;26:2290–8.

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Chen Q, Zhang N, Xie R, Wang W, Cai J, Choi KS, et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev. 2015;29:1285–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. 86.

    Li H, Gumbiner BM. Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis. Mamm Genome. 2016;27:556–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol. 2015;17:276–87.

    Article  PubMed  CAS  Google Scholar 

  88. 88.

    Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 2016;343:42–53.

    Article  PubMed  CAS  Google Scholar 

  89. 89.

    Liang J, Balachandra S, Ngo S, O’Brien LE. Feedback regulation of steady-state epithelial turnover and organ size. Nature. 2017;548:588–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. 90.

    Rubsam M, Mertz AF, Kubo A, Marg S, Jungst C, Goranci-Buzhala G, et al. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun. 2017;8:1250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. 91.

    Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34:8690–707.

    Article  PubMed  CAS  Google Scholar 

  92. 92.

    Fedor-Chaiken M, Hein PW, Stewart JC, Brackenbury R, Kinch MS. E-cadherin binding modulates EGF receptor activation. Cell Commun Adhes. 2003;10:105–18.

    Article  PubMed  CAS  Google Scholar 

  93. 93.

    Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 2002;4:222–31.

    Article  PubMed  CAS  Google Scholar 

  94. 94.

    Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res. 2015;17:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. 95.

    Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Investig. 2002;109:987–91.

    Article  PubMed  CAS  Google Scholar 

  96. 96.

    Citi S, Guerrera D, Spadaro D, Shah J. Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases. 2014;5:1–15.

    Article  PubMed  CAS  Google Scholar 

  97. 97.

    Asnaghi L, Vass WC, Quadri R, Day PM, Qian X, Braverman R, et al. E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases. Oncogene. 2010;29:2760–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. 98.

    Malliri A, van Es S, Huveneers S, Collard JG. The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J Biol Chem. 2004;279:30092–8.

    Article  PubMed  CAS  Google Scholar 

  99. 99.

    Shi X, Yin Z, Ling B, Wang L, Liu C, Ruan X, et al. Rho differentially regulates the Hippo pathway by modulating the interaction between Amot and Nf2 in the blastocyst. Development. 2017;144:3957–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the grant R01CA207115-02 awarded to Dr. Barry Gumbiner from the National Cancer Institute at the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alisha M. Mendonsa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendonsa, A.M., Na, TY. & Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene 37, 4769–4780 (2018). https://doi.org/10.1038/s41388-018-0304-2

Download citation

Further reading

Search

Quick links