Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Off and back-on again: a tumor suppressor’s tale

Abstract

Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle “off” tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function “back-on again” in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor’s tale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994;265(5168):103–6.

    Article  CAS  PubMed  Google Scholar 

  2. Birling MC, Gofflot F, Warot X. Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245–63.

    Article  CAS  PubMed  Google Scholar 

  3. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell . 2004;119(6):847–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.

    Article  CAS  PubMed  Google Scholar 

  5. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature . 1992;356(6366):215–21.

    Article  CAS  PubMed  Google Scholar 

  6. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA, et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature. 2010;468(7323):572–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuhrmann-Benzakein E, Garcia-Gabay I, Pepper MS, Vassalli JD, Herrera PL. Inducible and irreversible control of gene expression using a single transgene. Nucleic Acids Res. 2000;28(23):E99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schutz G. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 1996;24(8):1404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wunderlich FT, Wildner H, Rajewsky K, Edenhofer F. New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res. 2001;29(10):E47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun. 1997;237(3):752–7.

    Article  CAS  PubMed  Google Scholar 

  12. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 1999;27(22):4324–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart L, Verschuren EW, et al. Temporal dissection of p53 function in vitro and in vivo. Nat Genet. 2005;37(7):718–26.

    Article  CAS  PubMed  Google Scholar 

  14. Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell . 2006;127(7):1323–34.

    Article  CAS  PubMed  Google Scholar 

  15. Junttila MR, Karnezis AN, Garcia D, Madriles F, Kortlever RM, Rostker F, et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature. 2010;468(7323):567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whitfield J, Littlewood T, Evan GI, Soucek L. The estrogen receptor fusion system in mouse models: a reversible switch. Cold Spring Harb Protoc. 2015;2015(3):227–34.

    PubMed  PubMed Central  Google Scholar 

  17. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8.

    Article  CAS  PubMed  Google Scholar 

  18. Shchors K, Persson AI, Rostker F, Tihan T, Lyubynska N, Li N, et al. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy. Proc Natl Acad Sci USA. 2013;110(16):E1480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swisher SG, Roth JA, Komaki R, Gu J, Lee JJ, Hicks M, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviralp53 (INGN 201) and radiation therapy. Clin Cancer Res. 2003;9(1):93–101.

    CAS  PubMed  Google Scholar 

  20. Weinmann L, Wischhusen J, Demma MJ, Naumann U, Roth P, Dasmahapatra B, et al. A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 2008;15(4):718–29.

    Article  CAS  PubMed  Google Scholar 

  21. Selivanova G. Therapeutic targeting of p53 by small molecules. Semin Cancer Biol. 2010;20(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  22. Robles-Oteiza C, Taylor S, Yates T, Cicchini M, Lauderback B, Cashman CR, et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun. 2015;6:8783.

    Article  CAS  PubMed  Google Scholar 

  23. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature. 1992;359(6393):295–300.

    Article  CAS  PubMed  Google Scholar 

  24. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature. 1992;359(6393):288–94.

    Article  CAS  PubMed  Google Scholar 

  25. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15(24):3243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4(7):1064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lao Z, Raju GP, Bai CB, Joyner AL. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep. 2012;2(2):386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11(1):118–33.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun. 2016;7:10431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katoh Y, Michisaka S, Nozaki S, Funabashi T, Hirano T, Takei R, et al. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Mol Biol Cell. 2017;28(7):898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Premsrirut PK, Dow LE, Park Y, Hannon GJ, Lowe SW. Creating transgenic shRNA mice by recombinase-mediated cassette exchange. Cold Spring Harb Protoc. 2013;2013(9):835–42.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang JI, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci USA. 2006;103(37):13759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiznerowicz M, Szulc J, Trono D. Tuning silence: conditional systems for RNA interference. Nat Method. 2006;3(9):682–8.

    Article  CAS  Google Scholar 

  35. Meerbrey KL, Hu G, Kessler JD, Roarty K, Li MZ, Fang JE, et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci USA. 2011;108(9):3665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ, et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol. 2011;29(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  37. Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell . 2011;145(1):145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dow LE, Premsrirut PK, Zuber J, Fellmann C, McJunkin K, Miething C, et al. A pipeline for the generation of shRNA transgenic mice. Nat Protoc. 2012;7(2):374–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis. 2006;44(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  40. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miething C, Scuoppo C, Bosbach B, Appelmann I, Nakitandwe J, Ma J, et al. PTEN action in leukaemia dictated by the tissue microenvironment. Nature. 2014;510(7505):402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dow LE, O’Rourke KP, Simon J, Tschaharganeh DF, van Es JH, Clevers H, et al. Apc restoration promotes cellular differentiation and re-establishes crypt homeostasis in colorectal cancer. Cell. 2015;161(7):1539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Method. 2006;3(10):777–9.

    Article  CAS  Google Scholar 

  44. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaelin WG Jr.. Molecular biology. Use and abuse of RNAi to study mammalian gene function. Science . 2012;337(6093):421–2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.

    Article  CAS  PubMed  Google Scholar 

  48. Direnzo D, Hess DA, Damsz B, Hallett JE, Marshall B, Goswami C, et al. Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells. Gastroenterology. 2012;143(2):469–80.

    Article  CAS  PubMed  Google Scholar 

  49. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 2016;17(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  52. Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG. The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol Cell. 2017;68(1):15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell . 2013;154(2):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell . 2013;152(5):1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell . 2014;159(3):647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buskirk AR, Ong YC, Gartner ZJ, Liu DR. Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci Usa. 2004;101(29):10505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. 2015;11(5):316–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen DP, Miyaoka Y, Gilbert LA, Mayerl SJ, Lee BH, Weissman JS, et al. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun. 2016;7:12009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu J, Zhao C, Zhao Y, Zhang J, Zhang Y, Chen L, et al. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res. 2017, gkx1222, https://doi.org/10.1093/nar/gkx1222.

    Article  PubMed Central  Google Scholar 

  60. Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol.2015;33(4):390–4. https://doi.org/10.1038/nbt.3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O’Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10(8):1422–32.

    Article  CAS  PubMed  Google Scholar 

  62. Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44(19):e149.

    PubMed  PubMed Central  Google Scholar 

  63. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358(6366):1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Junwei Shi, Donita Brady, and the entire Feldser Laboratory for critical review of this manuscript. D.F. is the Alan Steinberg Scholar in Cancer Research, and a Richard A. “Buz” Cooper Scholar of the Abramson Cancer Center. Work in the Feldser Laboratory is supported by grants from the American Lung Association LCD-400095, NIH CA193602, CA205340, and also by Penn Medicine’s Abramson Cancer Center core grant P30-CA016520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Feldser.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, J., Wang, W. & Feldser, D.M. Off and back-on again: a tumor suppressor’s tale. Oncogene 37, 3058–3069 (2018). https://doi.org/10.1038/s41388-018-0186-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0186-3

This article is cited by

Search

Quick links