Article | Published:

Elevated mitochondrial SLC25A29 in cancer modulates metabolic status by increasing mitochondria-derived nitric oxide

Oncogenevolume 37pages25452558 (2018) | Download Citation

Abstract

Warburg effect has been recognized as a hallmark of cancer cells for many years, but its modulation mechanism remains a great focus. Our current study found a member of solute carrier family 25 (SLC25A29), the main arginine transporter on mitochondria, significantly elevated in various cancer cells. Knockout of SLC25A29 by CRISPR/Cas9 inhibited proliferation and migration of cancer cells both in vitro and in vivo. SLC25A29-knockout cells also showed an altered metabolic status with enhanced mitochondrial respiration and reduced glycolysis. All of above impacts could be reversed after rescuing SLC25A29 expression in SLC25A29-knockout cells. Arginine is transported into mitochondria partly for nitric oxide (NO) synthesis. Deletion of SLC25A29 resulted in severe decrease of NO production, indicating that the mitochondria is a significant source of NO. SLC25A29-knockout cells dramatically altered the variation of metabolic processes, whereas addition of arginine failed to reverse the effect, highlighting the necessity of transporting arginine into mitochondria by SLC25A29. In conclusion, aberrant elevated SLC25A29 in cancer functioned to transport more arginine into mitochondria, improved mitochondria-derived NO levels, thus modulated metabolic status to facilitate increased cancer progression.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

  2. 2.

    Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

  3. 3.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell . 2011;144:646–74.

  4. 4.

    Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

  5. 5.

    Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012;72:560–7.

  6. 6.

    Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013;3:a014217.

  7. 7.

    Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–4.

  8. 8.

    Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–30.

  9. 9.

    Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.

  10. 10.

    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

  11. 11.

    Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 2014;4:a014357.

  12. 12.

    Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metab. 2013;18:617–33.

  13. 13.

    Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med. 2015;79:324–36.

  14. 14.

    Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999;1411:351–69.

  15. 15.

    Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007;75:283–90.

  16. 16.

    Brix B, Mesters JR, Pellerin L, Johren O. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1alpha-mediated target gene activation. The. J Neurosci. 2012;32:9727–35.

  17. 17.

    Almeida A, Moncada S, Bolanos JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004;6:45–51.

  18. 18.

    Switzer CH, Cheng RY, Ridnour LA, Glynn SA, Ambs S, Wink DA. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res. 2012;14:R125.

  19. 19.

    Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995;369:136–9.

  20. 20.

    Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26:190–5.

  21. 21.

    Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med. 2013;34:465–84.

  22. 22.

    Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem. 2014;289:13374–84.

  23. 23.

    Wu G, Morris SM Jr.. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

  24. 24.

    Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA. 2001;98:14126–31.

  25. 25.

    Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, et al. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med. 2009;234:1020–8.

  26. 26.

    Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, et al. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome coxidase. Neurosci Lett. 2005;384:254–9.

  27. 27.

    Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED. Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol. 2005;396:424–44.

  28. 28.

    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

  29. 29.

    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

  30. 30.

    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

  31. 31.

    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

  32. 32.

    Hill BG, Benavides GA, Lancaster JR Jr., Ballinger S, Dell’Italia L, Jianhua Z, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012;393:1485–512.

  33. 33.

    Monne M, Miniero DV, Daddabbo L, Palmieri L, Porcelli V, Palmieri F. Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids. 2015;47:1763–77.

  34. 34.

    Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflug Arch. 2004;447:689–709.

  35. 35.

    Sekoguchi E, Sato N, Yasui A, Fukada S, Nimura Y, Aburatani H, et al. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem. 2003;278:38796–802.

  36. 36.

    Camacho JA, Rioseco-Camacho N. The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia- hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res. 2009;66:35–41.

  37. 37.

    Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418:291–6.

  38. 38.

    Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol. 2009;587(Pt 4):851–72.

  39. 39.

    Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci. 2009;14:4436–43.

  40. 40.

    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

  41. 41.

    Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006;17:571–88.

  42. 42.

    Moncada S, Bolanos JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 2006;97:1676–89.

  43. 43.

    Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994;356:295–8.

  44. 44.

    Cidad P, Almeida A, Bolanos JP. Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochem J. 2004;384(Pt 3):629–36.

  45. 45.

    Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

  46. 46.

    Brune B, Zhou J. Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc Res. 2007;75:275–82.

  47. 47.

    Quintero M, Brennan PA, Thomas GJ, Moncada S. Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1alpha in cancer: role of free radical formation. Cancer Res. 2006;66:770–4.

  48. 48.

    Sandau KB, Fandrey J, Brune B. Accumulation of HIF-1alpha under the influence of nitric oxide. Blood. 2001;97:1009–15.

Download references

Acknowledgements

This work is supported by the research grants held by Yuchun Gu (973 Project Number 2013CB531206, 973 Project Number 2012CB517803, and NSF Number 81170236 and Number 31127001).

Author information

Affiliations

  1. Laboratory of Molecular Pharmacology, Institute of Molecular Medicine, Peking University, Beijing, China

    • Huiyuan Zhang
    • , Qinyi Wang
    • , Junzhong Gu
    • , Le Yin
    • , Shenghui Liang
    • , Lida Wu
    • , Hao Xu
    •  & Yuchun Gu
  2. Department of Clinical Neurosciences, WT-MRC Cambridge Stem Cell Institute, Cambridge University, Cambridge, UK

    • Chao Zhao
  3. Translational and Regenerative Medicine Center, Aston Medical Research Institute, Aston University, Birmingham, UK

    • Yuchun Gu

Authors

  1. Search for Huiyuan Zhang in:

  2. Search for Qinyi Wang in:

  3. Search for Junzhong Gu in:

  4. Search for Le Yin in:

  5. Search for Shenghui Liang in:

  6. Search for Lida Wu in:

  7. Search for Hao Xu in:

  8. Search for Chao Zhao in:

  9. Search for Yuchun Gu in:

Conflict of interest

The authors declare that they have no competing interest.

Corresponding author

Correspondence to Yuchun Gu.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41388-018-0139-x

Further reading